机器学习基础02_特征工程

目录

一、概念

二、API

三、DictVectorize字典列表特征提取

四、CountVectorize文本特征提取

五、TF-IDF文本1特征词的重要程度特征提取

六、无量纲化预处理

[1、MinMaxScaler 归一化](#1、MinMaxScaler 归一化)

[2、StandardScaler 标准化](#2、StandardScaler 标准化)

七、特征降维

1、特征选择

[VarianceThreshold 底方差过滤降维](#VarianceThreshold 底方差过滤降维)

根据相关系数的特征选择


一、概念

一般是使用pandas来进行数据清洗和数据处理、使用sklearn来对特征进行相关的处理。

特征工程是将任意数据(如文本或图像)转换为可用于机器学习的数字特征,比如:字典特征提取(特征离散化)、文本特征提取、图像特征提取。

步骤:

  • 特征提取, 如果不是像dataframe那样的数据,要进行特征提取,比如字典特征提取,文本特征提取

  • 无量纲化(预处理)

    • 归一化

    • 标准化

  • 降维

    • 底方差过滤特征选择

    • 主成分分析-PCA降维

二、API

实例化转换器对象,转换器类有很多,都是Transformer的子类,常用的子类有:

DictVectorizer 字典特征提取

CountVectorizer 文本特征提取

TfidfVectorizer TF-IDF文本特征词的重要程度特征提取

MinMaxScaler 归一化

StandardScaler 标准化

VarianceThreshold 底方差过滤降维

PCA 主成分分析降维

三、DictVectorize字典列表特征提取

  • 创建转换器对象:

sklearn.feature_extraction.DictVectorizer(sparse=True)

参数

sparse=True返回类型为csr_matrix的稀疏矩阵

sparse=False表示返回的是数组,数组可以调用.toarray()方法将稀疏矩阵转换为数组

  • 转换器对象:

转换器对象调用fit_transform(data)函数,参数data为一维字典数组或一维字典列表,返回转化后的矩阵或数组

转换器对象get_feature_names_out()方法获取特征名

a)提取为稀疏矩阵对应的数组

python 复制代码
# DictVectorizer  字典列表特征提取
# 01 提取为稀疏矩阵对应的数组
from sklearn.feature_extraction import DictVectorizer
import pandas as pd

data = [
    {'city':'成都', 'age':30, 'temperature':200}, 
    {'city':'重庆','age':33, 'temperature':60}, 
    {'city':'北京', 'age':42, 'temperature':80}
    ]
# 创建DictVectorizer对象 字典转变为向量的工具器
transfer = DictVectorizer(sparse=False)# 返回的是数组
data_new = transfer.fit_transform(data)# 类型为numpy.ndarray
print('data_new:\n', data_new)
print('特征名字:\n', transfer.get_feature_names_out())# 返回特征名字

pd.DataFrame(data=data_new, columns=transfer.get_feature_names_out())

b)提取为稀疏矩阵(三元组)

python 复制代码
# 02 提取为稀疏矩阵(三元组)
from sklearn.feature_extraction import DictVectorizer
data = [
    {'city':'成都', 'age':30, 'temperature':200},
    {'city':'重庆','age':33, 'temperature':60}, 
    {'city':'北京', 'age':42, 'temperature':80}
    ]
transfer = DictVectorizer(sparse=True)# sparse=True表示返回的是稀疏矩阵
data_new = transfer.fit_transform(data)
# data_new的类型为<class 'scipy.sparse._csr.csr_matrix'>
print("data_new:\n", data_new) # 三元组
#得到特征 
print("特征名字:\n", transfer.get_feature_names_out())
print(data_new.toarray()) # 三元组(稀疏矩阵)转换为数组

其中, 稀疏矩阵对象调用**toarray()**函数, 得到类型为ndarray的二维稀疏矩阵。

关于稀疏矩阵和三元组

稀疏矩阵是指一个矩阵中大部分元素为零,只有少数元素是非零的矩阵。 在数学和计算机科学中,当一个矩阵的非零元素数量远小于总的元素数量,且非零元素分布没有明显的规律时,这样的矩阵就被认为是稀疏矩阵。

三元组表就是一种稀疏矩阵类型数据,存储非零元素的行索引、列索引和值:

(行,列) 数据

(0,0) 10

(0,1) 20

(2,0) 90

(2,20) 8

(8,0) 70

表示除了列出的有值, 其余全是0。

四、CountVectorize文本特征提取

sklearn.feature_extraction.text.CountVectorizer

​ 构造函数关键字参数stop_words,值为list,表示词的黑名单(不提取的词)。

fit_transform函数的返回值为稀疏矩阵。

a)英文文本特征提取

python 复制代码
from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd

data=["stu is well, stu is great", "You like stu"]
# 创建一个词频提取对象 提取文本特征向量
transfer = CountVectorizer(stop_words=['you','is'])# you和is这两个词会被过滤掉
data_new = transfer.fit_transform(data)# 进行提取,得到稀疏矩阵
print(data_new)

pd.DataFrame(data=data_new.toarray(),index=["第一个句子","第二个句子"],columns=transfer.get_feature_names_out())

b)中文文本特征提取

jieba库安装

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple jieba

python 复制代码
# CountVectorizer 中文文本特征提取
from sklearn.feature_extraction.text import CountVectorizer
import jieba

# data = ' '.join(data)
# print(data)
# 传入的文本(未断词的字符串)用jieba分词工具转化为数据容器,在把数据容器中的元素用空格连接成字符串
def my_cut(text):
    return ' '.join(jieba.cut(text))

data = ["教育学会会长期间,坚定支持民办教育事业!",  "扶持民办,学校发展事业","事业做出重大贡献!"]

transfer = CountVectorizer(stop_words=[])
# 提取词频,得到稀疏矩阵
data_new = transfer.fit_transform([my_cut(dt) for dt in data])
print(data_new)
print(transfer.get_feature_names_out())

pd.DataFrame(data=data_new.toarray(),columns=transfer.get_feature_names_out())

五、TF-IDF文本1特征词的重要程度特征提取

词频(Term Frequency, TF), 表示一个词在当前篇文章中的重要性,是对词数的归一化。

TF = 某词出现次数/总词数

逆文档频率(Inverse Document Frequency, IDF), 反映了词在整个文档集合中的稀有程度。

IDF = lg[(文档总数+1)/(包含该词的文档数+1)] + 1

重要程度 TF-TDF = TF*TDF

python 复制代码
# TfidfVectorizer TF-IDF文本特征词的重要程度特征提取 
from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer
import jieba
import pandas as pd

def my_cut(text):
    return ' '.join(jieba.cut(text))
data = ["教育学会会长期间,坚定支持民办教育事业!",  "扶持民办,学校发展事业","事业做出重大贡献!"]
data = [my_cut(i) for i in data]
# print(data)
transfer = TfidfVectorizer(stop_words=[])
data_new = transfer.fit_transform(data)
# print(data_new.toarray())
pd.DataFrame(data=data_new.toarray(),columns=transfer.get_feature_names_out())

六、无量纲化预处理

无量纲数据即没有单位的数据,无量纲化包括"归一化"和"标准化"。

1、MinMaxScaler 归一化

通过对原始数据进行变换把数据映射到指定区间(默认为0-1)。

x_scaled = (x - x_min)/(x_max - x_min)

这里的 𝑥min 和 𝑥max 分别是每种特征中的最小值和最大值,而 𝑥是当前特征值,𝑥scaled 是归一化后的特征值。

若要缩放到其他区间,可以使用公式:x_scaled'=x_scaled*(max-min)+min

python 复制代码
from sklearn.preprocessing import MinMaxScaler
import pandas as pd

scaler = MinMaxScaler(feature_range=(0, 1))
data = pd.read_excel('../src/minmaxscaler.xlsx')
# print(data.values)
data_new = scaler.fit_transform(data)
print(data_new)

最大值和最小值容易受到异常点影响,所以鲁棒性较差。所以常使用标准化的无量纲化。

2、StandardScaler 标准化

最常见的标准化方法是Z-score标准化,也称为零均值标准化。它通过对每个特征的值减去其均值,再除以其标准差,将数据转换为均值为0,标准差为1的分布。

μ = x.mean()

σ = x.std()

z_score = (x - μ) / σ

z是转换后的数值,x是原始数据的值,μ是该特征的均值,σ是该特征的标准差。

python 复制代码
from sklearn.preprocessing import StandardScaler
import numpy as np

scaler = StandardScaler()
np.random.seed(6)
data = np.random.randint(0,100,size=(4,4))# 随机生成4行4列的数据
# scaler.fit(data) # 计算出均值和标准差 只调用一次
# scaler.transform(data) # 转化数据
data_standard = scaler.fit_transform(data) # 后续调用transform方法

print(data)
print(data_standard)

关于fit()、fit_transform()、transform()

  1. fit:
  • 这个方法用来计算数据的统计信息,比如均值和标准差(在`StandardScaler`的情况下)。这些统计信息随后会被用于数据的标准化。

  • 应仅在训练集上使用`fit`方法。

  1. fit_transform:
  • 这个方法相当于先调用`fit`再调用`transform`,但是它在内部执行得更高效。

  • 它同样应当仅在训练集上使用,它会计算训练集的统计信息并立即应用到该训练集上。

  1. transform:
  • 这个方法使用已经通过`fit`方法计算出的统计信息来转换数据。

  • 它可以应用于任何数据集,包括训练集、验证集或测试集,但是应用时使用的统计信息必须来自于训练集。

在使用`StandardScaler`时,`fit`方法会根据训练数据集计算均值和标准差,然后将这些值保存在`StandardScaler`对象中。当你在另一个数据集上使用`transform`方法时,`StandardScaler`对象会根据之前计算的均值和标准差来转换数据。

一旦`scaler`对象在`X_train`上被`fit`,它就已经知道了如何将数据标准化。总的来说,我们常常是先使用fit_transform(x_train)然后再调用transform(x_text)。

七、特征降维

降维即去掉一些特征,或者转化多个特征为少个特征,以减少数据集的维度,同时尽可能保留数据的重要信息。

在高维空间中处理数据可能非常耗时且计算密集。降维可以简化模型,降低训练时间和资源需求。高维数据可能包含许多无关或冗余特征,这些特征可能引入噪声并导致过拟合。降维可以帮助去除这些不必要的特征。

1、特征选择

VarianceThreshold 底方差过滤降维

Filter(过滤式): 主要探究特征本身特点, 特征与特征、特征与目标值之间关联。

  • 方差选择法: 低方差特征过滤

如果一个特征的方差很小,说明这个特征的值在样本中几乎相同或变化不大,包含的信息量很少,模型很难通过该特征区分不同的对象,比如区分甜瓜子和咸瓜子还是蒜香瓜子,如果有一个特征是长度,这个特征相差不大可以去掉。

  1. 计算方差:对于每个特征,计算其在训练集中的方差(每个样本值与均值之差的平方,在求平均)。

  2. 设定阈值:选择一个方差阈值,任何低于这个阈值的特征都将被视为低方差特征。

  3. 过滤特征:移除所有方差低于设定阈值的特征。

python 复制代码
# 低方差过滤
from sklearn.feature_selection import VarianceThreshold
transfer = VarianceThreshold(threshold=0.5)# 方差阈值
data = [[0, 2, 0, 3], 
        [0, 1, 4, 3], 
        [0, 1, 1, 3]]
data_new = transfer.fit_transform(data)

print(data_new)
根据相关系数的特征选择

正相关性(Positive Correlation)是指两个变量之间的一种统计关系,其中一个变量的增加通常伴随着另一个变量的增加,反之亦然。在正相关的关系中,两个变量的变化趋势是同向的。当我们说两个变量正相关时,意味着:

  • 如果第一个变量增加,第二个变量也有很大的概率会增加。

  • 同样,如果第一个变量减少,第二个变量也很可能会减少。

在数学上,正相关性通常用正值的相关系数来表示,这个值介于0和1之间。当相关系数等于1时,表示两个变量之间存在完美的正相关关系,即一个变量的值可以完全由另一个变量的值预测。

负相关性(Negative Correlation)与正相关性刚好相反,但是也说明相关,比如运动频率和BMI体重指数程负相关。

不相关指两者的相关性很小,一个变量变化不会引起另外的变量变化,只是没有线性关系。

python 复制代码
# 皮尔逊相关系数
from scipy.stats import pearsonr
import pandas as pd

data = pd.read_csv('../src/factor_returns.csv')
data = data.iloc[:, 1:-2]
print(data)
# 计算某两个变量之间的相关系数
r = pearsonr(data["pe_ratio"], data["pb_ratio"])
print(r)
print(r.statistic)# 皮尔逊相关系数[-1,1]  -0.004389322779936271
print(r.pvalue)# 零假设 统计上评估两个变量之间的相关性,越小越相关 0.8327205496590723

注:开发中一般不使用求相关系数的方法,一般使用主成分分析,因为主成分分析过程中就包括了求相关系数。

相关推荐
AI_小站2 分钟前
RAG 示例:使用 langchain、Redis、llama.cpp 构建一个 kubernetes 知识库问答
人工智能·程序人生·langchain·kubernetes·llama·知识库·rag
Doker 多克4 分钟前
Spring AI 框架使用的核心概念
人工智能·spring·chatgpt
Guofu_Liao5 分钟前
Llama模型文件介绍
人工智能·llama
思通数科多模态大模型35 分钟前
10大核心应用场景,解锁AI检测系统的智能安全之道
人工智能·深度学习·安全·目标检测·计算机视觉·自然语言处理·数据挖掘
数据岛39 分钟前
数据集论文:面向深度学习的土地利用场景分类与变化检测
人工智能·深度学习
红色的山茶花1 小时前
YOLOv8-ultralytics-8.2.103部分代码阅读笔记-block.py
笔记·深度学习·yolo
龙的爹23331 小时前
论文翻译 | RECITATION-AUGMENTED LANGUAGE MODELS
人工智能·语言模型·自然语言处理·prompt·gpu算力
白光白光1 小时前
凸函数与深度学习调参
人工智能·深度学习
sp_fyf_20241 小时前
【大语言模型】ACL2024论文-18 MINPROMPT:基于图的最小提示数据增强用于少样本问答
人工智能·深度学习·神经网络·目标检测·机器学习·语言模型·自然语言处理
weixin_543662861 小时前
BERT的中文问答系统33
人工智能·深度学习·bert