DNN云边协同工作汇总(持续更新)

DNN云边协同工作汇总(持续更新)

云边协同旨在充分利用云边端资源完成DNN任务的推理计算,将整体模型进行划分后,利用终端设备、边缘服务器以及云计算中心的计算资源,将DNN划分为多个部分,分别部署在不同设备上进行推理。

  • 充分利用系统中可用的计算资源
  • 降低输入数据的传输开销

1 DNN Partitioning

DNN Partitioning 主要研究如何对单个DNN任务进行协同推理

1.1 链式拓扑

垂直划分首次由neurosurgeon这篇论文提出,首次提出了云边协同+模型划分的过程来降低模型推理时延。

1.2 DAG拓扑

DADS使用图论中的最大流最小割算法对DAG拓扑结构进行了分析,解决了一部分含有拓扑结构的模型的划分问题。

对于DNN模型推理时延的预测是模型划分中重要的一部分,总结了一些讲解推理时延预测的论文,如下:

1.3 水平划分

对DNN中的某一层进行分段划分,或者像网格一样划分后,使用多个边缘设备并行计算。

2 Task Offloaing

3 DNN Partitioning + Task Offloading

在多个边缘服务器和终端设备组成的云边端系统中,使DNN任务进行合理调度,降低任务完成的平均时延或平均能耗。在进行调度的过程中可以使用垂直划分和水平划分,也可以直接将一个DNN任务作为划分单位。

相关推荐
threelab1 小时前
07.three官方示例+编辑器+AI快速学习webgl_buffergeometry_attributes_integer
人工智能·学习·编辑器
背太阳的牧羊人1 小时前
tokenizer.encode_plus,BERT类模型 和 Sentence-BERT 他们之间的区别与联系
人工智能·深度学习·bert
学算法的程霖1 小时前
TGRS | FSVLM: 用于遥感农田分割的视觉语言模型
人工智能·深度学习·目标检测·机器学习·计算机视觉·自然语言处理·遥感图像分类
博睿谷IT99_2 小时前
华为HCIP-AI认证考试版本更新通知
人工智能·华为
一点.点3 小时前
SafeDrive:大语言模型实现自动驾驶汽车知识驱动和数据驱动的风险-敏感决策——论文阅读
人工智能·语言模型·自动驾驶
concisedistinct3 小时前
如何评价大语言模型架构 TTT ?模型应不应该永远“固定”在推理阶段?模型是否应当在使用时继续学习?
人工智能·语言模型·大模型
找了一圈尾巴3 小时前
AI Agent-基础认知与架构解析
人工智能·ai agent
jzwei0233 小时前
Transformer Decoder-Only 参数量计算
人工智能·深度学习·transformer
小言Ai工具箱3 小时前
PuLID:高效的图像变脸,可以通过文本提示编辑图像,通过指令修改人物属性,个性化文本到图像生成模型,支持AI变脸!艺术创作、虚拟形象定制以及影视制作
图像处理·人工智能·计算机视觉
白熊1883 小时前
【计算机视觉】基于深度学习的实时情绪检测系统:emotion-detection项目深度解析
人工智能·深度学习·计算机视觉