DNN云边协同工作汇总(持续更新)

DNN云边协同工作汇总(持续更新)

云边协同旨在充分利用云边端资源完成DNN任务的推理计算,将整体模型进行划分后,利用终端设备、边缘服务器以及云计算中心的计算资源,将DNN划分为多个部分,分别部署在不同设备上进行推理。

  • 充分利用系统中可用的计算资源
  • 降低输入数据的传输开销

1 DNN Partitioning

DNN Partitioning 主要研究如何对单个DNN任务进行协同推理

1.1 链式拓扑

垂直划分首次由neurosurgeon这篇论文提出,首次提出了云边协同+模型划分的过程来降低模型推理时延。

1.2 DAG拓扑

DADS使用图论中的最大流最小割算法对DAG拓扑结构进行了分析,解决了一部分含有拓扑结构的模型的划分问题。

对于DNN模型推理时延的预测是模型划分中重要的一部分,总结了一些讲解推理时延预测的论文,如下:

1.3 水平划分

对DNN中的某一层进行分段划分,或者像网格一样划分后,使用多个边缘设备并行计算。

2 Task Offloaing

3 DNN Partitioning + Task Offloading

在多个边缘服务器和终端设备组成的云边端系统中,使DNN任务进行合理调度,降低任务完成的平均时延或平均能耗。在进行调度的过程中可以使用垂直划分和水平划分,也可以直接将一个DNN任务作为划分单位。

相关推荐
wasp5203 分钟前
【开源】Banana Slide:一个基于nano banana pro[特殊字符]的原生AI PPT生成应用,迈向真正的"Vibe PPT"
人工智能·开源
说私域4 分钟前
破局互联网产品开发困境:开源AI智能名片链动2+1模式S2B2C商城小程序的实践与启示
人工智能·小程序·开源·私域运营
开源技术1 小时前
深入了解Turso,这个“用Rust重写的SQLite”
人工智能·python
初恋叫萱萱1 小时前
构建高性能生成式AI应用:基于Rust Axum与蓝耘DeepSeek-V3.2大模型服务的全栈开发实战
开发语言·人工智能·rust
水如烟8 小时前
孤能子视角:“组织行为学–组织文化“
人工智能
大山同学8 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
薛定谔的猫19828 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
壮Sir不壮9 小时前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw
PaperRed ai写作降重助手9 小时前
高性价比 AI 论文写作软件推荐:2026 年预算友好型
人工智能·aigc·论文·写作·ai写作·智能降重
玉梅小洋9 小时前
Claude Code 从入门到精通(七):Sub Agent 与 Skill 终极PK
人工智能·ai·大模型·ai编程·claude·ai工具