Spark:背压机制

Spark1.5以前版本,用户如果想要限制Receiver的数据接收速率,可以通过设置静态配置参数"spark.streaming.receiver.maxRate"的值来实现,此举虽然可以通过限制接收速率,来适配当前的处理能力,防止内存溢出,但也会引入其他问题,比如:producer数据生产高于maxRate,当前集群处理能力也高于maxRate,这就会造成资源利用率下降等问题。

为了更好的协调数据接收速率与资源处理能力,1.5版本开始SparkStreaming可以动态控制数据接收速率来适配集群数据处理能力,背压机制(Spark Streaming Backpressure):根据JobScheduler反馈作业的执行信息来动态调整Receiver数据接收率

通过属性"spark.streaming.backpressure.enabled"来控制是否启用backpressure机制,默认值false,即不启用

相关推荐
大数据CLUB1 小时前
基于spark的奥运会奖牌变化数据分析
大数据·hadoop·数据分析·spark
Edingbrugh.南空1 小时前
Hadoop高可用集群搭建
大数据·hadoop·分布式
智慧化智能化数字化方案1 小时前
69页全面预算管理体系的框架与落地【附全文阅读】
大数据·人工智能·全面预算管理·智慧财务·智慧预算
Bug退退退1232 小时前
RabbitMQ 高级特性之重试机制
java·分布式·spring·rabbitmq
武子康2 小时前
大数据-33 HBase 整体架构 HMaster HRegion
大数据·后端·hbase
在肯德基吃麻辣烫3 小时前
《Redis》缓存与分布式锁
redis·分布式·缓存
亲爱的非洲野猪3 小时前
Kafka消息积压全面解决方案:从应急处理到系统优化
分布式·kafka
掘金-我是哪吒4 小时前
分布式微服务系统架构第157集:JavaPlus技术文档平台日更-Java多线程编程技巧
java·分布式·微服务·云原生·架构
掘金-我是哪吒4 小时前
分布式微服务系统架构第155集:JavaPlus技术文档平台日更-Java线程池实现原理
java·分布式·微服务·云原生·架构
Bug退退退12314 小时前
RabbitMQ 高级特性之死信队列
java·分布式·spring·rabbitmq