Spark:背压机制

Spark1.5以前版本,用户如果想要限制Receiver的数据接收速率,可以通过设置静态配置参数"spark.streaming.receiver.maxRate"的值来实现,此举虽然可以通过限制接收速率,来适配当前的处理能力,防止内存溢出,但也会引入其他问题,比如:producer数据生产高于maxRate,当前集群处理能力也高于maxRate,这就会造成资源利用率下降等问题。

为了更好的协调数据接收速率与资源处理能力,1.5版本开始SparkStreaming可以动态控制数据接收速率来适配集群数据处理能力,背压机制(Spark Streaming Backpressure):根据JobScheduler反馈作业的执行信息来动态调整Receiver数据接收率

通过属性"spark.streaming.backpressure.enabled"来控制是否启用backpressure机制,默认值false,即不启用

相关推荐
企企通采购云平台5 分钟前
「天元宠物」×企企通,加速数智化升级,“链”接萌宠消费新蓝海
大数据·人工智能·宠物
Apache Flink16 分钟前
Flink Forward Asia 2025 主旨演讲精彩回顾
大数据·flink
泰迪智能科技012 小时前
分享|大数据采集工程师职业技术报考指南
大数据
搬砖天才、2 小时前
kafka集群安装
分布式·kafka
zskj_zhyl3 小时前
AI健康小屋“15分钟服务圈”:如何重构社区健康生态?
大数据·人工智能·物联网
AllData公司负责人3 小时前
实时开发IDE部署指南
大数据·ide·开源
电商数据girl4 小时前
有哪些常用的自动化工具可以帮助处理电商API接口返回的异常数据?【知识分享】
大数据·分布式·爬虫·python·系统架构
ZeroNews内网穿透4 小时前
服装零售企业跨区域运营难题破解方案
java·大数据·运维·服务器·数据库·tcp/ip·零售
百胜软件@百胜软件4 小时前
重庆兰瓶×百胜软件正式签约,全渠道中台赋能美业新零售
大数据·零售
江瀚视野4 小时前
美团即时零售日订单突破1.2亿,即时零售生态已成了?
大数据·人工智能·零售