深度学习的核心思想

刚开始随便给一个东西然后利用这个东西求一个我们想要的结果,用这个结果和真实的结果求损失,在反向求导更新我们随便给的东西,不断的多次下来,这个随便给的东西,就会逼近我们想要的东西。

简单说就是:深度学习就是刚开始随便给一个东西,然后通过,不断的损失求导最后能得到我们想要的结果

相关推荐
灰灰老师8 分钟前
数据分析系列--[11] RapidMiner,K-Means聚类分析(含数据集)
人工智能·算法·机器学习·数据挖掘·数据分析·kmeans·rapidminer
kyle~11 分钟前
机器学习--概览
人工智能·机器学习
追求源于热爱!37 分钟前
记4(可训练对象+自动求导机制+波士顿房价回归预测
图像处理·人工智能·算法·机器学习·回归
前端达人37 分钟前
「AI学习笔记」深度学习进化史:从神经网络到“黑箱技术”(三)
人工智能·笔记·深度学习·神经网络·学习
AIGC大时代44 分钟前
对比DeepSeek、ChatGPT和Kimi的学术写作撰写引言能力
数据库·论文阅读·人工智能·chatgpt·数据分析·prompt
神经美学_茂森1 小时前
【方法论】ChatGPT与DeepSeek的联合应用,提升工作效率的新解决方案
人工智能·chatgpt
一水鉴天1 小时前
为AI聊天工具添加一个知识系统 之82 详细设计之23 符号逻辑 &正则表达式规则 之1
人工智能
深蓝海拓1 小时前
基于深度学习的视觉检测小项目(十六) 用户管理界面的组态
人工智能·python·深度学习·qt·pyqt
Icomi_1 小时前
【PyTorch】7.自动微分模块:开启神经网络 “进化之门” 的魔法钥匙
c语言·c++·人工智能·pytorch·python·机器学习·计算机视觉
沐雪架构师1 小时前
AI大模型开发原理篇-4:神经概率语言模型NPLM
人工智能·语言模型·自然语言处理