普通电脑上安装属于自己的Llama 3 大模型和对话客户端

#大模型下载地址:#

Llama3

因为Hugging Face官网正常无法访问,因此推荐国内镜像进行下载:

官网地址:https://huggingface.co

国内镜像:https://hf-mirror.com

GGUF 模型文件名称接受,如上述列表中,有Meta-Llama-3-8B-Instruct.Q4_K_M.gguf和Meta-Llama-3-8B-Instruct.Q5_K_M.gguf等:

Instruct代表本模型是对基线模型进行了微调,用于更好地理解和生成遵循指令(instruction-following)的文本,以提供符合要求的响应

Q4/Q5 等代表模型权重的量化位数(其中Q是Quantization的缩小,即量化),是一种模型压缩技术,用于减少模型大小,同时降低对计算资源的需求(特别是内存),但又尽量保持模型的性能;数字4或5则代表量化精度的位数(Q4 是 4 位,Q5 是 5 位等),精度越高模型体积和内存使用也会越大,但仍然远小于未量化的基线模型

K_M/K_S代表含义笔者还未明确,K可能是Knowledge的缩写;M应该是Medium缩写(即中等模型),S应该是Small缩小(即小模型);若有明确的朋友,还望不吝告知,共同进步!

若个人电脑配置不是特别好,我们可以选择Q2_K版本(大小 3.2GB),它相较于Q4_K_M版本(大小 4.9GB),Q2版本的推理精度较低,但速度较快,而Q4版本在速度和精度之间均取得了很好的平衡,因此首选推荐Q4_K_M版本。

复制代码
# 打开两个CMD终端:
# cd D:\pythonProject
# .\venv\Scripts\activate


#终端一
bash 复制代码
 python -m llama_cpp.server --host 0.0.0.0 --model models\\Publisher\\Repository\\Meta-Llama-3-8B-Instruct.Q2_K.gguf
复制代码
#终端二
bash 复制代码
python Llama3-ChatAPI.py

Llama3-ChatAPI.py代码:

python 复制代码
from openai import OpenAI

# 注意服务端端口,因为是本地,所以不需要api_key
client = OpenAI(base_url="http://localhost:8000/v1",
         api_key="not-needed")

# 对话历史:设定系统角色是一个只能助理,同时提交"自我介绍"问题
history = [
    {"role": "system", "content": "你是一个智能助理,你的回答总是正确的、有用的和内容非常精简."},
    {"role": "user", "content": "请用中文进行自我介绍,要求不能超过5句话,总字数不超过100个字。"},
]
print("\033[92;1m")

# 首次自我介绍完毕,接下来是等代码我们的提示
while True:
    completion = client.chat.completions.create(
        model="local-model",
        messages=history,
        temperature=0.7,
        stream=True,
    )

    new_message = {"role": "assistant", "content": ""}

    for chunk in completion:
        if chunk.choices[0].delta.content:
            print(chunk.choices[0].delta.content, end="", flush=True)
            new_message["content"] += chunk.choices[0].delta.content

    history.append(new_message)
    print("\033[91;1m")

    userinput = input("> ")
    if userinput.lower() in ["bye", "quit", "exit"]: # 我们输入bye/quit/exit等均退出客户端
        print("\033[0mBYE BYE!")
        break

    history.append({"role": "user", "content": userinput})
    print("\033[92;1m")

启动成功,恭喜你,你已经迈入 Llama 大模型大厦的大门了,后面存在无限可能,就看我们的创意了!

相关推荐
Panesle2 天前
英伟达开源253B语言模型:Llama-3.1-Nemotron-Ultra-253B-v1 模型情况
人工智能·语言模型·llama·nvidia
JovaZou4 天前
n8n 本地部署及实践应用,实现零成本自动化运营 Telegram 频道(保证好使)
运维·人工智能·docker·ai·自然语言处理·自动化·llama
openownworld4 天前
LLaMA-Factory双卡4090微调DeepSeek-R1-Distill-Qwen-14B医学领域
llama
Panesle4 天前
英伟达Llama-3.1-Nemotron-Ultra-253B-v1语言模型论文快读:FFN Fusion
人工智能·语言模型·llama·nvidia
福大大架构师每日一题4 天前
transformers v4.51.1正式发布!Llama 4多项关键修复,深度学习玩家速更!
人工智能·深度学习·llama
OpenBayes5 天前
OpenBayes 一周速览|1分钟生成完整音乐,DiffRhythm人声伴奏一键搞定; Stable Virtual Camera重塑3D视频创作
人工智能·深度学习·数据集·llama·视频生成·推理·蛋白质突变
x-cmd5 天前
[250411] Meta 发布 Llama 4 系列 AI 模型 | Rust 1.86 引入重大语言特性
人工智能·rust·llama
m0_540507786 天前
Meta LLaMA 4:对抗 GPT-4o 与 Claude 的开源王牌
llama
百年孤独百年6 天前
Ollama调用多GPU实现负载均衡
分布式·大模型·负载均衡·llama·ollama·deepseek
Jackilina_Stone6 天前
【微调大模型】轻松微调百余种大模型:LLaMA-Factory
大模型·微调·llama