pytorch中数据和模型都要部署在cuda上面

注意一定要两个都部署在模型训练之前,缺少一个都会报错在两个设备上训练,一个在cpu,一个在cuda

部署数据到cuda上

复制代码
point_features = torch.tensor(point_features, dtype=torch.float32).to('cuda')  # 如果你有支持的 GPU,shape = (499,3159,3)
coord_time = torch.tensor(coord_time, dtype=torch.float32).to('cuda')  # 如果你有支持的 GPU  shape = (3159,3)
target = torch.tensor(target, dtype=torch.float32).to('cuda')  # 如果你有支持的 GPU  shape = (499,3159,3)

部署模型到cuda上

model = model.to('cuda')

相关推荐
张子夜 iiii7 分钟前
4步OpenCV-----扫秒身份证号
人工智能·python·opencv·计算机视觉
华新嘉华DTC创新营销2 小时前
华新嘉华:AI搜索优化重塑本地生活行业:智能推荐正取代“关键词匹配”
人工智能·百度·生活
SmartBrain3 小时前
DeerFlow 实践:华为IPD流程的评审智能体设计
人工智能·语言模型·架构
l1t4 小时前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华5 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu6 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师7 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
cxr8288 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡9 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成9 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发