pytorch中数据和模型都要部署在cuda上面

注意一定要两个都部署在模型训练之前,缺少一个都会报错在两个设备上训练,一个在cpu,一个在cuda

部署数据到cuda上

复制代码
point_features = torch.tensor(point_features, dtype=torch.float32).to('cuda')  # 如果你有支持的 GPU,shape = (499,3159,3)
coord_time = torch.tensor(coord_time, dtype=torch.float32).to('cuda')  # 如果你有支持的 GPU  shape = (3159,3)
target = torch.tensor(target, dtype=torch.float32).to('cuda')  # 如果你有支持的 GPU  shape = (499,3159,3)

部署模型到cuda上

model = model.to('cuda')

相关推荐
后端小肥肠1 分钟前
DeepSeek3.2+Coze王炸组合!小红书这个隐秘赛道有人成交7万单,有手就行!
人工智能·aigc·coze
阳光普照世界和平9 分钟前
2025年智能体架构与主流技术深度研究报告:从生成式AI迈向自主执行层
人工智能·架构
hzp66622 分钟前
招牌红烧肉版-深度神经网络
人工智能·深度学习·神经网络·llm·aigc·dnn·反向传播
乾元22 分钟前
Service Mesh 与网络抽象:AI 如何做服务层次网络策略生成(微服务 / 云原生)
网络·人工智能·安全·微服务·云原生·运维开发·service_mesh
Zoey的笔记本26 分钟前
告别“人机混战”:如何用智能管控实现安全高效协同
大数据·人工智能
奥利文儿32 分钟前
【虚拟机】Ubuntu24安装Miniconda3全记录:避坑指南与实践
大数据·数据仓库·人工智能·数据库开发·etl·虚拟机·etl工程师
2401_8353024832 分钟前
精准测试赋能高端制造!陶瓷基板介电常数测试的核心价值
大数据·人工智能·制造
寂寞恋上夜1 小时前
从需求到开发任务:WBS拆解的4个层级(附排期模板)
人工智能·prompt·markdown转xmind·deepseek思维导图
Tipriest_1 小时前
配置用户pip源与查看当前的pip的源的办法
linux·人工智能·python·pip
机器学习算法与Python实战1 小时前
DeepSeek-OCR本地部署(1):CUDA 升级12.9,不重启,教程
人工智能·ocr