动手学深度学习70 BERT微调

1. BERT微调






2. 自然语言推理数据集

3. BERT微调代码

4. QA

9 10, 一般不固定,固定参数可以使训练速度加快,可以尝试

11 应该能

12 本身很快+技术细节-->精度高

13 bert一般可以用工具转成c++ 开销大。考虑怎么提升bert性能。

14 设备性能不高,可以用蒸馏bert。模型中有大量冗余的东西。

相关推荐
It's now3 小时前
Spring AI 基础开发流程
java·人工智能·后端·spring
Glad_R3 小时前
巧用AI流程图,让信息呈现更全面
人工智能·信息可视化·产品运营·流程图·产品经理
西南胶带の池上桜3 小时前
1.Pytorch模型应用(线性与非线性预测)
人工智能·pytorch·python
杀生丸学AI4 小时前
【无标题】VGGT4D:用于4D场景重建的视觉Transformer运动线索挖掘
人工智能·深度学习·3d·aigc·transformer·三维重建·视觉大模型
小和尚同志4 小时前
还在手动配置?这款开源软件让你一键配置 Claude Code 和 Codex
人工智能·aigc
阿正的梦工坊4 小时前
ProRL:延长强化学习训练,扩展大语言模型推理边界——NeurIPS 2025论文解读
人工智能·语言模型·自然语言处理
致Great4 小时前
Ollama 进阶指南
人工智能·gpt·chatgpt·agent·智能体
Nautiluss4 小时前
一起玩XVF3800麦克风阵列(八)
大数据·人工智能·嵌入式硬件·github·音频·语音识别
yzx9910134 小时前
人工智能大模型新浪潮:五大突破性工具深度解析
人工智能