动手学深度学习70 BERT微调

1. BERT微调






2. 自然语言推理数据集

3. BERT微调代码

4. QA

9 10, 一般不固定,固定参数可以使训练速度加快,可以尝试

11 应该能

12 本身很快+技术细节-->精度高

13 bert一般可以用工具转成c++ 开销大。考虑怎么提升bert性能。

14 设备性能不高,可以用蒸馏bert。模型中有大量冗余的东西。

相关推荐
zd2005721 分钟前
AI辅助数据分析和学习了没?
人工智能·学习
johnny2338 分钟前
强化学习RL
人工智能
乌恩大侠13 分钟前
无线网络规划与优化方式的根本性变革
人工智能·usrp
放羊郎15 分钟前
基于萤火虫+Gmapping、分层+A*优化的导航方案
人工智能·slam·建图·激光slam
王哈哈^_^21 分钟前
【数据集+完整源码】水稻病害数据集,yolov8水稻病害检测数据集 6715 张,目标检测水稻识别算法实战训推教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
SEOETC40 分钟前
数字人技术:虚实交融的未来图景正在展开
人工智能
boonya1 小时前
从阿里云大模型服务平台百炼看AI应用集成与实践
人工智能·阿里云·云计算
amhjdx1 小时前
三维技术 + AI 动画,焕活古镇科技人文新表达,天南文化助力 2025 年世界互联网大会乌镇峰会
人工智能·科技
鹿子沐1 小时前
LLamaFactory模型导出量化
人工智能·语言模型
skywalk81631 小时前
尝试Auto-coder.chat使用星河社区AIStudio部署的几个大模型:文心4.5-21b、Deepseek r1 70b、llama 3.1 8b
linux·服务器·人工智能·大模型·aistudio