pytorch detach方法介绍

detach() 是 PyTorch 中用于停止梯度追踪的一个方法。它在处理计算图时特别有用,可以将一个张量从其计算图中分离出来,这样在反向传播时不会计算该张量的梯度。

detach() 的作用

  • 停止梯度追踪 :通过 detach() 获得的新张量不再参与计算图的构建,因此不会记录它的任何操作。即使该张量在后续计算中被使用,它的梯度不会被计算,也不会影响原始计算图中的其他张量。
  • 节省计算资源:在某些情况下,分离不参与梯度更新的张量可以减小计算图的规模,从而减少内存消耗和计算负担。

示例代码

复制代码
import torch

# 创建一个需要梯度的张量
x = torch.tensor([2.0, 3.0], requires_grad=True)
y = x * 3

# 使用 detach
z = y.detach()
print("z requires_grad:", z.requires_grad)  # False

# 对 y 求和并反向传播
y.sum().backward()
print("x.grad:", x.grad)  # 有梯度,因为 y 参与了计算图

在上面的例子中:

  • zy.detach() 的结果,不会参与任何梯度计算,因此 z.requires_gradFalse
  • y 的操作没有被 detach(),因此反向传播时,x 会获得梯度。

常见应用场景

  1. 中间结果不需要梯度 :在模型的某些中间步骤,可能需要一个张量的值但不需要计算梯度,此时可以使用 detach() 来避免这些张量对梯度的影响。

  2. 防止梯度回传 :当模型需要在训练中对同一张量重复使用多次而不希望多次回传梯度时,可以使用 detach() 防止累积梯度。

  3. 辅助张量 :在生成新的不计算梯度的张量,比如计算位置编码时,detach() 可以保证生成的张量在设备迁移时不受影响。

detach()register_buffer 的一种替代方法,适合在希望张量在设备迁移时不自动转移的情况下使用。

相关推荐
Coder_Boy_32 分钟前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱3 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º4 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
寻星探路4 小时前
【深度长文】万字攻克网络原理:从 HTTP 报文解构到 HTTPS 终极加密逻辑
java·开发语言·网络·python·http·ai·https
Codebee6 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º7 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys7 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56787 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子7 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
ValhallaCoder7 小时前
hot100-二叉树I
数据结构·python·算法·二叉树