pytorch detach方法介绍

detach() 是 PyTorch 中用于停止梯度追踪的一个方法。它在处理计算图时特别有用,可以将一个张量从其计算图中分离出来,这样在反向传播时不会计算该张量的梯度。

detach() 的作用

  • 停止梯度追踪 :通过 detach() 获得的新张量不再参与计算图的构建,因此不会记录它的任何操作。即使该张量在后续计算中被使用,它的梯度不会被计算,也不会影响原始计算图中的其他张量。
  • 节省计算资源:在某些情况下,分离不参与梯度更新的张量可以减小计算图的规模,从而减少内存消耗和计算负担。

示例代码

复制代码
import torch

# 创建一个需要梯度的张量
x = torch.tensor([2.0, 3.0], requires_grad=True)
y = x * 3

# 使用 detach
z = y.detach()
print("z requires_grad:", z.requires_grad)  # False

# 对 y 求和并反向传播
y.sum().backward()
print("x.grad:", x.grad)  # 有梯度,因为 y 参与了计算图

在上面的例子中:

  • zy.detach() 的结果,不会参与任何梯度计算,因此 z.requires_gradFalse
  • y 的操作没有被 detach(),因此反向传播时,x 会获得梯度。

常见应用场景

  1. 中间结果不需要梯度 :在模型的某些中间步骤,可能需要一个张量的值但不需要计算梯度,此时可以使用 detach() 来避免这些张量对梯度的影响。

  2. 防止梯度回传 :当模型需要在训练中对同一张量重复使用多次而不希望多次回传梯度时,可以使用 detach() 防止累积梯度。

  3. 辅助张量 :在生成新的不计算梯度的张量,比如计算位置编码时,detach() 可以保证生成的张量在设备迁移时不受影响。

detach()register_buffer 的一种替代方法,适合在希望张量在设备迁移时不自动转移的情况下使用。

相关推荐
zhongtianhulian12 小时前
江苏设备管理平台哪家好
大数据·运维·python
跨境卫士—小依12 小时前
深耕 Ozon:俄罗斯电商精准盈利的核心玩法
大数据·人工智能·矩阵·跨境电商·亚马逊·防关联
love530love12 小时前
【ComfyUI/SD环境管理指南(二)】:如何避免插件安装导致的环境崩溃与“外科手术式”修复
人工智能·windows·python·stable diffusion·github·aigc·comfyui
Yeats_Liao12 小时前
CANN Samples(九):内存管理与性能优化
人工智能·深度学习·性能优化
Dev7z12 小时前
基于深度学习的中文手写数字识别系统研究与实现
人工智能·深度学习
编程修仙12 小时前
第五章 Spring XML配置原理
xml·python·spring
wshzd12 小时前
LLM之Agent(三十六)|AI Agents(五):Workflow vs Agent
人工智能
创客匠人老蒋12 小时前
AI正在重塑IP:创客匠人峰会探讨智能体与未来趋势
人工智能·创始人ip·创客匠人全球ip+ai高峰论坛
江上鹤.14812 小时前
Day25评价问题
python
万行12 小时前
英语作文模板
python