24.11.14 朴素贝叶斯分类 决策树-分类

朴素贝叶斯分类

python 复制代码
import joblib
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB

# 实例化贝叶斯分类器
model = MultinomialNB()
# 记载鸢尾花数据
X, y = load_iris(return_X_y=True)
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, random_state=666)
# 训练模型
model.fit(X_train, y_train)
# 评估
score = model.score(X_test, y_test)
print(score)
# 保存模型
joblib.dump(model, "./model/bayes.bin")
python 复制代码
import joblib

# 加载模型
model = joblib.load("./model/bayes.bin")
# 传入参数进行预测
poin = model.predict([[1, 2, 3, 4]])
print(poin)
python 复制代码
# 泰坦尼克号生还测试
import pandas as pd
import joblib
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB

# 实例化贝叶斯分类器
model = MultinomialNB()
# 实例化字典列表特征提取


data = pd.read_csv("./src/titanic/titanic.csv")
x = data[["age", "sex", "pclass"]]
x["age"].fillna(x["age"].value_counts().index[0], inplace=True)
print(x)
x["sex"] = [0 if i == "male" else 1 for i in x["sex"]]
x["pclass"] = [int(i[0]) for i in x["pclass"]]
print(x)
# y = data["survived"]

# 数据处理
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(x, y, train_size=0.8, random_state=666)
# 训练模型
model.fit(X_train, y_train)
# 评估
score = model.score(X_test, y_test)
print(score)
# 保存模型
joblib.dump(model, "./model/ttbayes.bin")
python 复制代码
import joblib

# 加载模型
model = joblib.load("./model/ttbayes.bin")
# 传入参数进行预测
poin = model.predict([[3,1,3]])
print(poin)

决策树-分类

python 复制代码
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier, export_graphviz

# 决策树
model = DecisionTreeClassifier(criterion="entropy")
# 加载数据
x, y = load_iris(return_X_y=True)
# 
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)

# 加载标准化估计器
scaler = StandardScaler()

scaler.fit(x_train)
x_train = scaler.transform(x_train)

# 训练模型
model.fit(x_train, y_train)

# 标准化需要用来测试的数据
x_test = scaler.transform(x_test)
# 评分
rank = model.score(x_test, y_test)
print(rank)

# 预估数据
y_pred = model.predict([[1, 1, 1, 1], [2, 2, 2, 2]])
print(y_pred)

# 决策过程可视化
export_graphviz(model, out_file="./model/tree.dot", feature_names=["萼片长", "萼片宽", "花瓣长", "花瓣宽"])
相关推荐
Ryan老房2 分钟前
智能家居AI-家庭场景物体识别标注实战
人工智能·yolo·目标检测·计算机视觉·ai·智能家居
2401_836235863 分钟前
财务报表识别产品:从“数据搬运”到“智能决策”的技术革命
人工智能·科技·深度学习·ocr·生活
明明如月学长22 分钟前
全网最火的 Agent Skills 都在这了!这 7 个宝藏市场建议收藏
人工智能
猫头虎23 分钟前
如何使用Docker部署OpenClaw汉化中文版?
运维·人工智能·docker·容器·langchain·开源·aigc
njsgcs24 分钟前
输入图片,点击按钮,返回下一个state的图片,llm给标签,循环,能训练出按钮对应的标签吗
人工智能
Aric_Jones28 分钟前
如何在网站中接入 AI 智能助手
人工智能
m0_5711866033 分钟前
第三十四周周报
人工智能
AI资源库33 分钟前
microsoftVibeVoice-ASR模型深入解析
人工智能·语言模型
jarvisuni34 分钟前
开发“360安全卫士”,Opus4.6把GPT5.3吊起来打了?!
人工智能·gpt·ai编程