什么情况下使用强化学习

1. 深度学习与深度强化学习的核心区别

深度学习与深度强化学习的"核心"都是用神经网络,通过训练调整参数,让模型对输入数据 X 有更好的输出 Y。而它们本质上的区别主要在于:数据来源、训练目标、反馈方式。

深度学习更像是在"背标准答案",用现成的数据直接学;深度强化学习更像是在"玩游戏",通过不断试错、和环境互动,自己摸索什么行为最优。


2. 从预测到决策

如果只预测股票涨跌幅度,那是深度学习或者机器学习;而学习通过择时选择不同动作,以获得收益最大化,则是强化学习。

方面 深度学习(DL) 深度强化学习(DRL)
数据来源 预先准备的静态数据 交互环境中动态产生的数据
目标 预测已知标签 最大化长期累计奖励
反馈 明确的标签/损失 间接的奖励/反馈
训练过程 直接优化损失 需探索 - 收集 - 利用经验
数据分布 固定(i.i.d.) 不断变化,依赖策略

3. 连续决策

与深度学习的"单次预测"不同,强化学习关注的是连续决策过程:一个动作会影响后续状态与奖励。模型不仅要考虑当前结果,更要权衡"现在做什么"对"未来能得到什么"的长期影响。这种"序列决策"正是强化学习复杂且强大的原因。


4. 环境

深度强化学习像是在深度学习外面包了一层"数据生成"和"目标计算"逻辑,而把数据送进神经网络、通过梯度下降调参的内核,在原理上没什么区别。

在选择模型时,如果输入 X 和输出 Y 一直保持不变,那就不是强化学习;因为强化学习使用的数据是在智能体与环境交互过程中动态生成的。因此,没有环境(无论是模拟的还是现实的),就无法动态生成新的 X 和 Y,也就无法进行强化学习。环境是强化学习的核心,没有环境就没有 RL。


5. 医疗中的强化学习

在可复盘、可模拟的环境中,我们能让智能体反复试错、快速成长;但在许多现实问题中,环境并不那么友好。

比如在医疗诊断和治疗中,每一个决策都会带来长期影响,而患者对治疗的反应又无法完全预测。这类连续决策问题虽然天然适合强化学习,但最大的困难恰恰在于------环境不可直接试验

为此,研究者往往会建立"虚拟病人模型",让智能体在模拟环境中探索不同治疗路径,从而学习出相对稳定、可靠、甚至个体化的策略。换句话说,即便环境并不完美,强化学习依然能帮助我们从不确定性中提炼出更优的决策模式

相关推荐
竣雄5 分钟前
计算机视觉:原理、技术与未来展望
人工智能·计算机视觉
救救孩子把15 分钟前
44-机器学习与大模型开发数学教程-4-6 大数定律与中心极限定理
人工智能·机器学习
Rabbit_QL28 分钟前
【LLM评价指标】从概率到直觉:理解语言模型的困惑度
人工智能·语言模型·自然语言处理
呆萌很35 分钟前
HSV颜色空间过滤
人工智能
roman_日积跬步-终至千里1 小时前
【人工智能导论】02-搜索-高级搜索策略探索篇:从约束满足到博弈搜索
java·前端·人工智能
FL16238631291 小时前
[C#][winform]基于yolov11的淡水鱼种类检测识别系统C#源码+onnx模型+评估指标曲线+精美GUI界面
人工智能·yolo·目标跟踪
爱笑的眼睛111 小时前
从 Seq2Seq 到 Transformer++:深度解构与自构建现代机器翻译核心组件
java·人工智能·python·ai
小润nature1 小时前
AI时代对编程技能学习方式的根本变化(1)
人工智能
AI即插即用2 小时前
即插即用系列 | ECCV 2024 WTConv:利用小波变换实现超大感受野的卷积神经网络
图像处理·人工智能·深度学习·神经网络·计算机视觉·cnn·视觉检测
愚公搬代码3 小时前
【愚公系列】《扣子开发 AI Agent 智能体应用》003-扣子 AI 应用开发平台介绍(选择扣子的理由)
人工智能