什么情况下使用强化学习

1. 深度学习与深度强化学习的核心区别

深度学习与深度强化学习的"核心"都是用神经网络,通过训练调整参数,让模型对输入数据 X 有更好的输出 Y。而它们本质上的区别主要在于:数据来源、训练目标、反馈方式。

深度学习更像是在"背标准答案",用现成的数据直接学;深度强化学习更像是在"玩游戏",通过不断试错、和环境互动,自己摸索什么行为最优。


2. 从预测到决策

如果只预测股票涨跌幅度,那是深度学习或者机器学习;而学习通过择时选择不同动作,以获得收益最大化,则是强化学习。

方面 深度学习(DL) 深度强化学习(DRL)
数据来源 预先准备的静态数据 交互环境中动态产生的数据
目标 预测已知标签 最大化长期累计奖励
反馈 明确的标签/损失 间接的奖励/反馈
训练过程 直接优化损失 需探索 - 收集 - 利用经验
数据分布 固定(i.i.d.) 不断变化,依赖策略

3. 连续决策

与深度学习的"单次预测"不同,强化学习关注的是连续决策过程:一个动作会影响后续状态与奖励。模型不仅要考虑当前结果,更要权衡"现在做什么"对"未来能得到什么"的长期影响。这种"序列决策"正是强化学习复杂且强大的原因。


4. 环境

深度强化学习像是在深度学习外面包了一层"数据生成"和"目标计算"逻辑,而把数据送进神经网络、通过梯度下降调参的内核,在原理上没什么区别。

在选择模型时,如果输入 X 和输出 Y 一直保持不变,那就不是强化学习;因为强化学习使用的数据是在智能体与环境交互过程中动态生成的。因此,没有环境(无论是模拟的还是现实的),就无法动态生成新的 X 和 Y,也就无法进行强化学习。环境是强化学习的核心,没有环境就没有 RL。


5. 医疗中的强化学习

在可复盘、可模拟的环境中,我们能让智能体反复试错、快速成长;但在许多现实问题中,环境并不那么友好。

比如在医疗诊断和治疗中,每一个决策都会带来长期影响,而患者对治疗的反应又无法完全预测。这类连续决策问题虽然天然适合强化学习,但最大的困难恰恰在于------环境不可直接试验

为此,研究者往往会建立"虚拟病人模型",让智能体在模拟环境中探索不同治疗路径,从而学习出相对稳定、可靠、甚至个体化的策略。换句话说,即便环境并不完美,强化学习依然能帮助我们从不确定性中提炼出更优的决策模式

相关推荐
开源技术3 小时前
深入了解Turso,这个“用Rust重写的SQLite”
人工智能·python
初恋叫萱萱3 小时前
构建高性能生成式AI应用:基于Rust Axum与蓝耘DeepSeek-V3.2大模型服务的全栈开发实战
开发语言·人工智能·rust
水如烟10 小时前
孤能子视角:“组织行为学–组织文化“
人工智能
大山同学10 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
薛定谔的猫198211 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
壮Sir不壮11 小时前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw
PaperRed ai写作降重助手11 小时前
高性价比 AI 论文写作软件推荐:2026 年预算友好型
人工智能·aigc·论文·写作·ai写作·智能降重
玉梅小洋11 小时前
Claude Code 从入门到精通(七):Sub Agent 与 Skill 终极PK
人工智能·ai·大模型·ai编程·claude·ai工具
-嘟囔着拯救世界-11 小时前
【保姆级教程】Win11 下从零部署 Claude Code:本地环境配置 + VSCode 可视化界面全流程指南
人工智能·vscode·ai·编辑器·html5·ai编程·claude code
正见TrueView11 小时前
程一笑的价值选择:AI金玉其外,“收割”老人败絮其中
人工智能