NLP开发常见问题

Q01:过拟合问题?

解决方案:

1,数据增强;增加数据集;

在输入层加入噪声:数据集增强。

在隐藏层加入噪声:Dropout。

在输出层加入噪声:标签平滑。

4,添加残差块;

5,提前终止;

6,随机池化等

Q02:梯度消失和梯度爆炸

解决方案:

1,由于梯度消失或者梯度爆炸都是一堆数值的累乘,如果是一堆大于1的数一起累乘,容易发生梯度爆炸;

如果是一堆小于1的数一起累乘,容易发生梯度消失,所以,一般把训练数据送入模型之前都会做归一化处理;

复制代码
2,梯度裁剪:梯度裁剪是一种简单有效的方法,通过设置一个阈值,当梯度的范数超过该阈值时,将其裁剪到该阈值范围内,从而防止梯度爆炸

3,换模型,比如RNN模型容易发生梯度爆炸或者梯度消失,LSTM和GRU模型虽然不能完全解决梯度消失问题,但是在一定程度上可以缓解梯度消失

Q03:模型漂移和模型退化的问题?

解决方案:

1,更换模型;

2,使用付费模型

Q04:LangChain问题:1,版本不稳定,升级到0.2以后,0.1版本不可用;2,LangChain更新迭代太慢,很多功能都没有,需要程序员重新开发

解决方案:弃用LangChain,根据需求重新开发一版

Q05:泛化能力不足的问题?

解决方案:

◼ 正则化

◼ 增加神经网络层数

◼ 使用正确的代价函数

◼ 使用好的权重初始化技术

◼ 人为拓展训练集

◼ 弃权技术

增加模型复杂度:

增加测试数据相似度较高的数据集:

Q06:多分类问题:

1,如果是两层循环:准确率高达98%-99%

2,如果是三层循环:准确率95%-96%

3,如果是四层五层循环:准确率不但会大大降低,还有可能分错

调优技巧:

1,超参数调节:网格搜索、随机搜索

2,激活函数的选择:

3,损失函数的选择:

相关推荐
集成显卡4 分钟前
AI取名大师 | uni-app + Wot UI 跟随设备自动切换明暗主题
人工智能·ui·uni-app·外观配色
码上地球15 分钟前
大数据成矿预测系列(九) | 数据的“自我画像”:自编码器如何实现非监督下的“特征学习”
人工智能·深度学习·机器学习·数学建模
愚公搬代码27 分钟前
【愚公系列】《MCP协议与AI Agent开发》011-MCP协议标准与规范体系(交互协议与状态码体系)
人工智能·交互
小程故事多_8037 分钟前
LangGraph系列:多智能体终极方案,ReAct+MCP工业级供应链系统
人工智能·react.js·langchain
진영_39 分钟前
深度学习打卡第R4周:LSTM-火灾温度预测
人工智能·深度学习·lstm
陈希瑞1 小时前
从 0 到 1:Vue3+Django打造现代化宠物商城系统(含AI智能顾问)
人工智能·django·宠物
std78791 小时前
微软Visual Studio 2026正式登场,AI融入开发核心操作体验更流畅
人工智能·microsoft·visual studio
美狐美颜SDK开放平台1 小时前
什么是美颜sdk?美型功能开发与用户体验优化实战
人工智能·算法·ux·直播美颜sdk·第三方美颜sdk·视频美颜sdk
Mxsoft6191 小时前
电力绝缘子污秽多源感知与自适应清洁策略优化
人工智能
悟空CRM服务1 小时前
开源的力量:如何用开源技术构建高效IT架构?
java·人工智能·架构·开源·开源软件