深度学习:transpose_qkv()与transpose_output()

transpose_qkv 函数的主要作用是将输入的张量重新排列,使其适合多头注意力的计算。具体来说,它将输入张量的形状从 (batch_size, seq_len, num_hiddens) 转换为 (batch_size * num_heads, seq_len, num_hiddens // num_heads)

详细步骤

  • 输入形状

    假设输入的张量形状为 (batch_size, seq_len, num_hiddens),其中:

    batch_size 是批次大小。

    seq_len 是序列长度。

    num_hiddens 是隐藏层的维度。

  • 拆分多头

    多头注意力机制将 num_hiddens 维度拆分成 num_heads 个头,每个头的维度为 num_hiddens // num_heads。

  • 重新排列

    通过重新排列张量的维度,将 (batch_size, seq_len, num_hiddens) 转换为 (batch_size * num_heads, seq_len, num_hiddens // num_heads)。

具体实现

假设 transpose_qkv 函数的实现如下:

csharp 复制代码
def transpose_qkv(X, num_heads):
    # X: (batch_size, seq_len, num_hiddens)
    batch_size, seq_len, num_hiddens = X.shape
    num_hiddens_per_head = num_hiddens // num_heads
    
    # 将 num_hiddens 维度拆分成 num_heads 个头
    X = X.reshape(batch_size, seq_len, num_heads, num_hiddens_per_head)
    
    # 交换维度,使得每个头的数据连续排列
    X = X.permute(0, 2, 1, 3)  # (batch_size, num_heads, seq_len, num_hiddens_per_head)
    
    # 将 batch_size 和 num_heads 合并
    X = X.reshape(batch_size * num_heads, seq_len, num_hiddens_per_head)
    
    return X
  • 解释
    1. 拆分维度:
      X.reshape(batch_size, seq_len, num_heads, num_hiddens_per_head):
      将 num_hiddens 维度拆分成 num_heads 个头,每个头的维度为 num_hiddens_per_head。
      此时,X 的形状为 (batch_size, seq_len, num_heads, num_hiddens_per_head)。
    2. 交换维度:
      X.permute(0, 2, 1, 3):
      将 num_heads 维度移到第二个位置,使得每个头的数据连续排列。
      此时,X 的形状为 (batch_size, num_heads, seq_len, num_hiddens_per_head)。
    3. 合并维度:
      X.reshape(batch_size * num_heads, seq_len, num_hiddens_per_head):
      将 batch_size 和 num_heads 合并,使得每个头的数据连续排列。
      此时,X 的形状为 (batch_size * num_heads, seq_len, num_hiddens_per_head)。

总结

transpose_qkv 函数通过以下步骤将输入张量重新排列,使其适合多头注意力的计算:

  • 将 num_hiddens 维度拆分成 num_heads 个头。

  • 交换维度,使得每个头的数据连续排列。

  • 合并 batch_size 和 num_heads 维度,使得每个头的数据连续排列。

最终,transpose_qkv 函数返回形状为 (batch_size * num_heads, seq_len, num_hiddens // num_heads) 的张量,以便进行多头注意力计算。

transpose_output 函数的主要作用是将多头注意力的输出重新排列,使其适合后续的处理。具体来说,它将输入张量的形状从 (batch_size * num_heads, seq_len, num_hiddens // num_heads) 转换为 (batch_size, seq_len, num_hiddens)

具体实现

假设 transpose_output 函数的实现如下:

csharp 复制代码
def transpose_output(X, num_heads):
    # X: (batch_size * num_heads, seq_len, num_hiddens_per_head)
    batch_size_times_num_heads, seq_len, num_hiddens_per_head = X.shape
    batch_size = batch_size_times_num_heads // num_heads
    
    # 将 batch_size 和 num_heads 拆分
    X = X.reshape(batch_size, num_heads, seq_len, num_hiddens_per_head)
    
    # 交换维度,使得每个头的数据连续排列
    X = X.permute(0, 2, 1, 3)  # (batch_size, seq_len, num_heads, num_hiddens_per_head)
    
    # 将 num_heads 和 num_hiddens_per_head 合并
    X = X.reshape(batch_size, seq_len, num_heads * num_hiddens_per_head)
    
    return X
  • 解释
    1. 拆分维度:
      X.reshape(batch_size, num_heads, seq_len, num_hiddens_per_head):
      将 batch_size * num_heads 维度拆分成 batch_size 和 num_heads。
      此时,X 的形状为 (batch_size, num_heads, seq_len, num_hiddens_per_head)。
    2. 交换维度:
      X.permute(0, 2, 1, 3):
      将 seq_len 维度移到第二个位置,使得每个头的数据连续排列。
      此时,X 的形状为 (batch_size, seq_len, num_heads, num_hiddens_per_head)。
    3. 合并维度:
      X.reshape(batch_size, seq_len, num_heads * num_hiddens_per_head):
      将 num_heads 和 num_hiddens_per_head 合并,使得每个头的数据连续排列。
      此时,X 的形状为 (batch_size, seq_len, num_hiddens)。

总结

transpose_output 函数通过以下步骤将多头注意力的输出重新排列,使其适合后续的处理:

  • 将 batch_size * num_heads 维度拆分成 batch_size 和 num_heads。

  • 交换维度,使得每个头的数据连续排列。

  • 合并 num_heads 和 num_hiddens_per_head 维度,使得每个头的数据连续排列。

最终,transpose_output 函数返回形状为 (batch_size, seq_len, num_hiddens) 的张量,以便进行后续的处理。

相关推荐
OpenCSG7 分钟前
CSGHub开源版本v1.2.0更新
人工智能
weixin_515202498 分钟前
第R3周:RNN-心脏病预测
人工智能·rnn·深度学习
Altair澳汰尔11 分钟前
数据分析和AI丨知识图谱,AI革命中数据集成和模型构建的关键推动者
人工智能·算法·机器学习·数据分析·知识图谱
AI视觉网奇32 分钟前
人脸生成3d模型 Era3D
人工智能·计算机视觉
call me by ur name35 分钟前
VLM--CLIP作分类任务的损失函数
人工智能·机器学习·分类
吃个糖糖1 小时前
34 Opencv 自定义角点检测
人工智能·opencv·计算机视觉
禁默1 小时前
2024年图像处理、多媒体技术与机器学习
图像处理·人工智能·microsoft
KeepThinking!1 小时前
YOLO-World:Real-Time Open-Vocabulary Object Detection
人工智能·yolo·目标检测·多模态
AIGCmagic社区1 小时前
AI多模态技术介绍:理解多模态大语言模型的原理
人工智能·语言模型·自然语言处理
图王大胜1 小时前
模型 双螺旋(通俗解读)
人工智能·管理·系统科学·认知科学·生命科学·战略规划·通识科学