python的matplotlib实现数据分析绘图

目录

需求

效果

数据分析绘图示例

代码解释

运行结果


需求

分析一个班级中学生成绩分布,并绘图

效果

数据分析绘图示例

python 复制代码
import matplotlib.pyplot as plt
import numpy as np

# 假设的学生成绩数据
np.random.seed(0)  # 设置随机种子以确保结果可复现
scores = np.random.normal(loc=75, scale=15, size=100)  # 生成100个正态分布的成绩,平均分为75,标准差为15

# 绘制直方图
plt.figure(figsize=(12, 6))

# 直方图
plt.subplot(1, 2, 1)
plt.hist(scores, bins=10, edgecolor='black', alpha=0.7)
plt.title('学生成绩分布直方图')
plt.xlabel('成绩')
plt.ylabel('学生人数')
plt.grid(True)

# 箱线图
plt.subplot(1, 2, 2)
plt.boxplot(scores, vert=False, patch_artist=True)
plt.title('学生成绩分布箱线图')
plt.xlabel('成绩')
plt.grid(True)

# 显示图表
plt.tight_layout()
plt.show()

代码解释

  1. 数据生成

    • 使用 numpy 生成假设的学生成绩数据。这里我们假设成绩服从正态分布,平均分为75,标准差为15,生成100个数据点。
    • np.random.seed(0) 设置随机种子以确保每次运行结果一致。
  2. 绘制直方图

    • 使用 plt.hist 绘制直方图,bins=10 表示将成绩分成10个区间,edgecolor='black' 设置直方图边缘颜色,alpha=0.7 设置透明度。
    • 添加标题、标签和网格线,以便图表更易读。
  3. 绘制箱线图

    • 使用 plt.boxplot 绘制箱线图,vert=False 表示水平方向绘制,patch_artist=True 表示填充箱体颜色。
    • 添加标题、标签和网格线,以便图表更易读。
  4. 显示图表

    • 使用 plt.tight_layout() 自动调整子图布局,避免重叠。
    • 使用 plt.show() 显示图表。

运行结果

运行上述代码后,你将看到两个图表:

  1. 直方图:展示了学生成绩的分布情况,可以看到各个分数段的学生人数。
  2. 箱线图:展示了学生成绩的五数概括(最小值、第一四分位数、中位数、第三四分位数、最大值),并显示异常值。
相关推荐
噎住佩奇13 分钟前
(Win11系统)搭建Python爬虫环境
爬虫·python
basketball61618 分钟前
python 的对象序列化
开发语言·python
fie888936 分钟前
钢结构件制造车间生产调度实例:MATLAB实现(基于遗传算法)
开发语言·matlab·制造
沐知全栈开发40 分钟前
PHP 安装指南
开发语言
rgeshfgreh40 分钟前
Python流程控制:从条件到循环实战
前端·数据库·python
luoluoal44 分钟前
基于python大数据的电影市场预测分析(源码+文档)
python·mysql·django·毕业设计·源码
幻云20101 小时前
Python深度学习:从入门到实战
人工智能·python
Highcharts.js1 小时前
Highcharts Grid 表格/网格安装 |官方安装文档说明
开发语言·javascript·表格组件·highcharts·官方文档·安装说明·网格组件
Zoey的笔记本1 小时前
敏捷与稳定并行:Scrum看板+BPM工具选型指南
大数据·前端·数据库·python·低代码
Coder_Boy_2 小时前
基于SpringAI的在线考试系统-企业级软件研发工程应用规范实现细节
大数据·开发语言·人工智能·spring boot