python的matplotlib实现数据分析绘图

目录

需求

效果

数据分析绘图示例

代码解释

运行结果


需求

分析一个班级中学生成绩分布,并绘图

效果

数据分析绘图示例

python 复制代码
import matplotlib.pyplot as plt
import numpy as np

# 假设的学生成绩数据
np.random.seed(0)  # 设置随机种子以确保结果可复现
scores = np.random.normal(loc=75, scale=15, size=100)  # 生成100个正态分布的成绩,平均分为75,标准差为15

# 绘制直方图
plt.figure(figsize=(12, 6))

# 直方图
plt.subplot(1, 2, 1)
plt.hist(scores, bins=10, edgecolor='black', alpha=0.7)
plt.title('学生成绩分布直方图')
plt.xlabel('成绩')
plt.ylabel('学生人数')
plt.grid(True)

# 箱线图
plt.subplot(1, 2, 2)
plt.boxplot(scores, vert=False, patch_artist=True)
plt.title('学生成绩分布箱线图')
plt.xlabel('成绩')
plt.grid(True)

# 显示图表
plt.tight_layout()
plt.show()

代码解释

  1. 数据生成

    • 使用 numpy 生成假设的学生成绩数据。这里我们假设成绩服从正态分布,平均分为75,标准差为15,生成100个数据点。
    • np.random.seed(0) 设置随机种子以确保每次运行结果一致。
  2. 绘制直方图

    • 使用 plt.hist 绘制直方图,bins=10 表示将成绩分成10个区间,edgecolor='black' 设置直方图边缘颜色,alpha=0.7 设置透明度。
    • 添加标题、标签和网格线,以便图表更易读。
  3. 绘制箱线图

    • 使用 plt.boxplot 绘制箱线图,vert=False 表示水平方向绘制,patch_artist=True 表示填充箱体颜色。
    • 添加标题、标签和网格线,以便图表更易读。
  4. 显示图表

    • 使用 plt.tight_layout() 自动调整子图布局,避免重叠。
    • 使用 plt.show() 显示图表。

运行结果

运行上述代码后,你将看到两个图表:

  1. 直方图:展示了学生成绩的分布情况,可以看到各个分数段的学生人数。
  2. 箱线图:展示了学生成绩的五数概括(最小值、第一四分位数、中位数、第三四分位数、最大值),并显示异常值。
相关推荐
亿牛云爬虫专家39 分钟前
Kubernetes下的分布式采集系统设计与实战:趋势监测失效引发的架构进化
分布式·python·架构·kubernetes·爬虫代理·监测·采集
iCxhust2 小时前
c# U盘映像生成工具
开发语言·单片机·c#
yangzhi_emo3 小时前
ES6笔记2
开发语言·前端·javascript
emplace_back4 小时前
C# 集合表达式和展开运算符 (..) 详解
开发语言·windows·c#
jz_ddk4 小时前
[学习] C语言数学库函数背后的故事:`double erf(double x)`
c语言·开发语言·学习
萧曵 丶4 小时前
Rust 所有权系统:深入浅出指南
开发语言·后端·rust
xiaolang_8616_wjl4 小时前
c++文字游戏_闯关打怪2.0(开源)
开发语言·c++·开源
收破烂的小熊猫~4 小时前
《Java修仙传:从凡胎到码帝》第四章:设计模式破万法
java·开发语言·设计模式
蹦蹦跳跳真可爱5895 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉