python的matplotlib实现数据分析绘图

目录

需求

效果

数据分析绘图示例

代码解释

运行结果


需求

分析一个班级中学生成绩分布,并绘图

效果

数据分析绘图示例

python 复制代码
import matplotlib.pyplot as plt
import numpy as np

# 假设的学生成绩数据
np.random.seed(0)  # 设置随机种子以确保结果可复现
scores = np.random.normal(loc=75, scale=15, size=100)  # 生成100个正态分布的成绩,平均分为75,标准差为15

# 绘制直方图
plt.figure(figsize=(12, 6))

# 直方图
plt.subplot(1, 2, 1)
plt.hist(scores, bins=10, edgecolor='black', alpha=0.7)
plt.title('学生成绩分布直方图')
plt.xlabel('成绩')
plt.ylabel('学生人数')
plt.grid(True)

# 箱线图
plt.subplot(1, 2, 2)
plt.boxplot(scores, vert=False, patch_artist=True)
plt.title('学生成绩分布箱线图')
plt.xlabel('成绩')
plt.grid(True)

# 显示图表
plt.tight_layout()
plt.show()

代码解释

  1. 数据生成

    • 使用 numpy 生成假设的学生成绩数据。这里我们假设成绩服从正态分布,平均分为75,标准差为15,生成100个数据点。
    • np.random.seed(0) 设置随机种子以确保每次运行结果一致。
  2. 绘制直方图

    • 使用 plt.hist 绘制直方图,bins=10 表示将成绩分成10个区间,edgecolor='black' 设置直方图边缘颜色,alpha=0.7 设置透明度。
    • 添加标题、标签和网格线,以便图表更易读。
  3. 绘制箱线图

    • 使用 plt.boxplot 绘制箱线图,vert=False 表示水平方向绘制,patch_artist=True 表示填充箱体颜色。
    • 添加标题、标签和网格线,以便图表更易读。
  4. 显示图表

    • 使用 plt.tight_layout() 自动调整子图布局,避免重叠。
    • 使用 plt.show() 显示图表。

运行结果

运行上述代码后,你将看到两个图表:

  1. 直方图:展示了学生成绩的分布情况,可以看到各个分数段的学生人数。
  2. 箱线图:展示了学生成绩的五数概括(最小值、第一四分位数、中位数、第三四分位数、最大值),并显示异常值。
相关推荐
码上淘金39 分钟前
【Python】Python常用控制结构详解:条件判断、遍历与循环控制
开发语言·python
Brilliant Nemo41 分钟前
四、SpringMVC实战:构建高效表述层框架
开发语言·python
2301_787552871 小时前
console-chat-gpt开源程序是用于 AI Chat API 的 Python CLI
人工智能·python·gpt·开源·自动化
懵逼的小黑子1 小时前
Django 项目的 models 目录中,__init__.py 文件的作用
后端·python·django
Y3174292 小时前
Python Day23 学习
python·学习
Ai尚研修-贾莲2 小时前
Python语言在地球科学交叉领域中的应用——从数据可视化到常见数据分析方法的使用【实例操作】
python·信息可视化·数据分析·地球科学
格林威2 小时前
Baumer工业相机堡盟工业相机的工业视觉中为什么偏爱“黑白相机”
开发语言·c++·人工智能·数码相机·计算机视觉
橙子199110163 小时前
在 Kotlin 中什么是委托属性,简要说说其使用场景和原理
android·开发语言·kotlin
androidwork3 小时前
Kotlin Android LeakCanary内存泄漏检测实战
android·开发语言·kotlin
qq_508576093 小时前
if __name__ == ‘__main__‘
python