概率论之常见分布与matlab绘图

文章目录

1.二项分布

1.1基本形式

X ∼ B ( n , p ) \mathrm{X}\sim \mathrm{B}\left( \mathrm{n},\mathrm{p} \right) X∼B(n,p)

1.2概率公式

P ( x = k ) = C n k p k ( 1 − p ) n − k \mathrm{P}\left( \mathrm{x}=\mathrm{k} \right) =\mathrm{C}_{\mathrm{n}}^{\mathrm{k}}\mathrm{p}^{\mathrm{k}}\left( 1-\mathrm{p} \right) ^{\mathrm{n}-\mathrm{k}} P(x=k)=Cnkpk(1−p)n−k

1.3概率密度函数

1.4matlab代码

matlab 复制代码
clear;
clc;
x=1:20;
y=binopdf(x,200,0.06);
figure;
plot(x,y,'r*');
title('二项分布(n=200,p=0.06)');

1.5我的理解

在这个二项分布的两个参数里面,这个第一个参数表示的就是我们的这个实验的进行的次数,第二个参数表示的就是我们的这个对应的某一个事件出现的这个概率;

结合实际的情景进行理解这个二项分布:

在医学实验中,比如测试某种新药物的疗效。可以把对每个患者使用药物看作是一次独立试验,药物对患者有效的概率设为p ,选取n个患者参与实验。通过二项分布,就能知道在这n个患者里,有多少患者能达到预期疗效(比如恰好有k个患者病情好转)的概率情况。这对于评估药物的有效性、决定是否继续研发推广该药物等起着关键作用。(来自AI,只会为了更好地理解这个理论在我们的生活里面的应用,方便我们的这个学习理解);

在上面的这个案例里面,我们就是通过这个二项分布对于我们的这个药物的效果进行预测,当真实的情况发生之后,我们就可以进行核对,校验这个药物的有效性;

2.泊松分布

2.1基本绘图

matlab 复制代码
clear;
clc;
x=1:20;
y=poisspdf(x,20);
figure;
plot(x,y,'r+')
title('泊松分布')

2.2高级绘图

matlab 复制代码
lambda_values = [1, 3, 5, 10];
x = 0:19; % 定义取值范围

for lambda_val = lambda_values
    y = poisspdf(x, lambda_val); % 计算泊松分布概率质量函数值
    plot(x, y, 'o-', 'DisplayName', sprintf('lambda = %d', lambda_val));
    hold on;
end
xlabel('k (Number of events)');
ylabel('Probability');
title('Poisson Distribution Probability Mass Function');
legend('show');

2.3一点说明

我们上面介绍的这个二项分布,在这个n很大的时候就是趋近于这个泊松分布的;

3.指数分布

3.1计算方法

f ( x ) = { 0 , e l s e λ e − λ x , x > 0 , λ > 0 \mathrm{f}\left( \mathrm{x} \right) =\left\{ _{0,\mathrm{else}}^{^{\mathrm{\lambda e}^{-\mathrm{\lambda x}},\mathrm{x}>0,\mathrm{\lambda}>0}} \right. f(x)={0,elseλe−λx,x>0,λ>0

3.2图像绘制

matlab 复制代码
clear;
clc;
x=0:0.1:10;
y=exppdf(x,2);
figure;
plot(x,y,'r:');
title('指数分布')

4.几何分布

4.1计算方法

p { x = k } = ( 1 − p ) k − 1 p \mathrm{p}\left\{ \mathrm{x}=\mathrm{k} \right\} =\left( 1-\mathrm{p} \right) ^{\mathrm{k}-1}\mathrm{p} p{x=k}=(1−p)k−1p

4.2绘图代码

matlab 复制代码
clear;
clc;
x=1:10
y=geopdf(x,0.4)
figure;
plot(x,y,'rx');
title('几何分布')
相关推荐
心情好的小球藻5 分钟前
Python应用进阶DAY9--类型注解Type Hinting
开发语言·python
惜.己17 分钟前
使用python读取json数据,简单的处理成元组数组
开发语言·python·测试工具·json
Y40900124 分钟前
C语言转Java语言,相同与相异之处
java·c语言·开发语言·笔记
古月-一个C++方向的小白6 小时前
C++11之lambda表达式与包装器
开发语言·c++
沐知全栈开发6 小时前
Eclipse 生成 jar 包
开发语言
杭州杭州杭州7 小时前
Python笔记
开发语言·笔记·python
tanyongxi668 小时前
C++ AVL树实现详解:平衡二叉搜索树的原理与代码实现
开发语言·c++
阿葱(聪)9 小时前
java 在k8s中的部署流程
java·开发语言·docker·kubernetes
浮生带你学Java9 小时前
2025Java面试题及答案整理( 2025年 7 月最新版,持续更新)
java·开发语言·数据库·面试·职场和发展
斯是 陋室9 小时前
在CentOS7.9服务器上安装.NET 8.0 SDK
运维·服务器·开发语言·c++·c#·云计算·.net