概率论之常见分布与matlab绘图

文章目录

1.二项分布

1.1基本形式

X ∼ B ( n , p ) \mathrm{X}\sim \mathrm{B}\left( \mathrm{n},\mathrm{p} \right) X∼B(n,p)

1.2概率公式

P ( x = k ) = C n k p k ( 1 − p ) n − k \mathrm{P}\left( \mathrm{x}=\mathrm{k} \right) =\mathrm{C}_{\mathrm{n}}^{\mathrm{k}}\mathrm{p}^{\mathrm{k}}\left( 1-\mathrm{p} \right) ^{\mathrm{n}-\mathrm{k}} P(x=k)=Cnkpk(1−p)n−k

1.3概率密度函数

1.4matlab代码

matlab 复制代码
clear;
clc;
x=1:20;
y=binopdf(x,200,0.06);
figure;
plot(x,y,'r*');
title('二项分布(n=200,p=0.06)');

1.5我的理解

在这个二项分布的两个参数里面,这个第一个参数表示的就是我们的这个实验的进行的次数,第二个参数表示的就是我们的这个对应的某一个事件出现的这个概率;

结合实际的情景进行理解这个二项分布:

在医学实验中,比如测试某种新药物的疗效。可以把对每个患者使用药物看作是一次独立试验,药物对患者有效的概率设为p ,选取n个患者参与实验。通过二项分布,就能知道在这n个患者里,有多少患者能达到预期疗效(比如恰好有k个患者病情好转)的概率情况。这对于评估药物的有效性、决定是否继续研发推广该药物等起着关键作用。(来自AI,只会为了更好地理解这个理论在我们的生活里面的应用,方便我们的这个学习理解);

在上面的这个案例里面,我们就是通过这个二项分布对于我们的这个药物的效果进行预测,当真实的情况发生之后,我们就可以进行核对,校验这个药物的有效性;

2.泊松分布

2.1基本绘图

matlab 复制代码
clear;
clc;
x=1:20;
y=poisspdf(x,20);
figure;
plot(x,y,'r+')
title('泊松分布')

2.2高级绘图

matlab 复制代码
lambda_values = [1, 3, 5, 10];
x = 0:19; % 定义取值范围

for lambda_val = lambda_values
    y = poisspdf(x, lambda_val); % 计算泊松分布概率质量函数值
    plot(x, y, 'o-', 'DisplayName', sprintf('lambda = %d', lambda_val));
    hold on;
end
xlabel('k (Number of events)');
ylabel('Probability');
title('Poisson Distribution Probability Mass Function');
legend('show');

2.3一点说明

我们上面介绍的这个二项分布,在这个n很大的时候就是趋近于这个泊松分布的;

3.指数分布

3.1计算方法

f ( x ) = { 0 , e l s e λ e − λ x , x > 0 , λ > 0 \mathrm{f}\left( \mathrm{x} \right) =\left\{ _{0,\mathrm{else}}^{^{\mathrm{\lambda e}^{-\mathrm{\lambda x}},\mathrm{x}>0,\mathrm{\lambda}>0}} \right. f(x)={0,elseλe−λx,x>0,λ>0

3.2图像绘制

matlab 复制代码
clear;
clc;
x=0:0.1:10;
y=exppdf(x,2);
figure;
plot(x,y,'r:');
title('指数分布')

4.几何分布

4.1计算方法

p { x = k } = ( 1 − p ) k − 1 p \mathrm{p}\left\{ \mathrm{x}=\mathrm{k} \right\} =\left( 1-\mathrm{p} \right) ^{\mathrm{k}-1}\mathrm{p} p{x=k}=(1−p)k−1p

4.2绘图代码

matlab 复制代码
clear;
clc;
x=1:10
y=geopdf(x,0.4)
figure;
plot(x,y,'rx');
title('几何分布')
相关推荐
Q_Q5110082852 分钟前
python的保险业务管理与数据分析系统
开发语言·spring boot·python·django·flask·node.js·php
亮1112 分钟前
Maven 编译过程中发生了 Java Heap Space 内存溢出(OutOfMemoryError)
java·开发语言·maven
Chef_Chen6 分钟前
从0开始学习R语言--Day40--Kruskal-Wallis检验
开发语言·学习·r语言
Zhu_S W12 分钟前
深入理解Java虚拟机:Java内存区域与内存溢出异常
java·开发语言·jvm
灰海17 分钟前
原型与原型链到底是什么?
开发语言·前端·javascript·es6·原型模式·原生js
鸡蛋灌Bean34 分钟前
Java常用设计模式大全
java·开发语言·设计模式
钮钴禄·爱因斯晨1 小时前
C语言 | 函数核心机制深度解构:从底层架构到工程化实践
c语言·开发语言·数据结构
wkj0011 小时前
php中array($this, ‘loadClass‘)表示啥意思?
android·开发语言·php
Stuomasi_xiaoxin1 小时前
服务器重装后如何“复活”旧硬盘上的 Anaconda 环境?—— 一次完整的排错与恢复记录
开发语言·python·github
presenttttt2 小时前
用Python和OpenCV从零搭建一个完整的双目视觉系统(四)
开发语言·python·opencv·计算机视觉