【人工智能】从零开始用Python实现逻辑回归模型:深入理解逻辑回归的原理与应用

解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!

逻辑回归是一种经典的统计学习方法,用于分类问题尤其是二分类问题。它通过学习数据的特征和目标标签之间的关系,输出样本属于某个类别的概率。本文将从零开始用Python实现逻辑回归模型,深入探讨其数学原理,并逐步讲解如何编写代码实现。我们会涵盖从数据预处理、特征归一化、梯度下降算法到模型训练的每一个细节。通过丰富的代码示例和详细的中文注释,本文将帮助读者从头掌握逻辑回归模型的构建与优化。


正文

目录
  1. 逻辑回归简介
  2. 逻辑回归的数学原理
    • 2.1 逻辑回归的假设函数
    • 2.2 损失函数的推导
    • 2.3 梯度下降优化
  3. 从零开始实现逻辑回归模型
    • 3.1 数据预处理
    • 3.2 逻辑回归模型类的定义
    • 3.3 编写模型训练方法
    • 3.4 编写模型预测方法
  4. 逻辑回归模型的性能评估
    • 4.1 准确率与混淆矩阵
    • 4.2 交叉验证
  5. 完整代码实现
  6. 实验与结果分析
  7. 总结

1. 逻辑回归简介

逻辑回归是一种广泛应用的分类模型,通常用于二分类问题。不同于线性回归直接输出一个数值,逻辑回归使用一个Sigmoid函数将预测值映射到[0, 1]区间,以此表示样本属于某个类别的概率。逻辑回归的目标是找到最佳的参数,使得模型能够正确地将输入映射到相应的类别。

2. 逻辑回归的数学原理

逻辑回归的数学基础是线性模型,通过线性组合的输入特征生成一个预测值,然后利用Sigmoid函数将其转换为概率。

2.1 逻辑回归的假设函数

逻辑回归的假设函数为:

h θ ( x ) = σ ( θ T x ) = 1 1 + e − θ T x h_{\theta}(x) = \sigma(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}} hθ(x)=σ(θTx)=1+e−θTx1

其中:

  • h θ ( x ) h_{\theta}(x) hθ(x) 是预测的概率值;
  • θ \theta θ 是模型的参数向量;
  • x x x 是特征向量;
  • σ ( z ) = 1 1 + e − z \sigma(z) = \frac{1}{1 + e^{-z}} σ(z)=1+e−z1是Sigmoid激活函数。

Sigmoid函数的输出在(0, 1)之间,表示样本属于正类(标签为1)的概率。

2.2 损失函数的推导

逻辑回归的目标是最小化损失函数(Cost Function),通常选择对数似然函数作为损失函数。对于单个样本,损失函数为:

L ( h θ ( x ) , y ) = − y log ⁡ ( h θ ( x ) ) − ( 1 − y ) log ⁡ ( 1 − h θ ( x ) ) L(h_{\theta}(x), y) = -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x)) L(hθ(x),y)=−ylog(hθ(x))−(1−y)log(1−hθ(x))

其中 y 为样本的真实标签。当 y=1 时,我们最小化 − log ⁡ ( h θ ( x ) ) -\log(h_{\theta}(x)) −log(hθ(x));当 y=0 时,我们最小化 − log ⁡ ( 1 − h θ ( x ) ) -\log(1 - h_{\theta}(x)) −log(1−hθ(x))。

总体的损失函数,即所有样本的平均损失为:

J ( θ ) = 1 m ∑ i = 1 m ( − y ( i ) log ⁡ ( h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ) J(\theta) = \frac{1}{m} \sum_{i=1}^m \left(-y^{(i)} \log(h_{\theta}(x^{(i)})) - (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))\right) J(θ)=m1i=1∑m(−y(i)log(hθ(x(i)))−(1−y(i))log(1−hθ(x(i))))

2.3 梯度下降优化

为了优化损失函数,我们可以使用梯度下降法更新参数 ( \theta )。梯度下降的更新公式为:

θ = θ − α ∇ J ( θ ) \theta = \theta - \alpha \nabla J(\theta) θ=θ−α∇J(θ)

其中:
α \alpha α 是学习率;

  • ∇ J ( θ ) \nabla J(\theta) ∇J(θ) 是损失函数 J ( θ ) J(\theta) J(θ)关于参数的梯度。

梯度的计算公式为:

∂ J ( θ ) ∂ θ j = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) \frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)} ∂θj∂J(θ)=m1i=1∑m(hθ(x(i))−y(i))xj(i)


3. 从零开始实现逻辑回归模型

接下来,我们将逐步实现逻辑回归模型,包括数据预处理、模型定义、训练和预测。

3.1 数据预处理

首先,我们使用一个简单的二分类数据集。数据集需要进行标准化处理,以提高模型的训练效果。

python 复制代码
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# 生成简单的二分类数据集
np.random.seed(0)
X = np.random.randn(100, 2)  # 100个样本,每个样本2个特征
y = (X[:, 0] + X[:, 1] > 0).astype(int)  # 简单的线性可分数据

# 数据划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 数据标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
3.2 逻辑回归模型类的定义

接下来,我们定义逻辑回归模型类,包括初始化、Sigmoid函数和损失函数的实现。

python 复制代码
class LogisticRegression:
    def __init__(self, learning_rate=0.01, n_iterations=1000):
        self.learning_rate = learning_rate
        self.n_iterations = n_iterations
        self.weights = None
        self.bias = None

    def sigmoid(self, z):
        # 定义Sigmoid激活函数
        return 1 / (1 + np.exp(-z))

    def compute_cost(self, y, y_pred):
        # 计算损失函数
        m = len(y)
        cost = (-1 / m) * np.sum(y * np.log(y_pred) + (1 - y) * np.log(1 - y_pred))
        return cost
3.3 编写模型训练方法

使用梯度下降算法优化模型参数。梯度计算基于损失函数的偏导数。

python 复制代码
    def fit(self, X, y):
        # 初始化参数
        m, n = X.shape
        self.weights = np.zeros(n)
        self.bias = 0

        for i in range(self.n_iterations):
            # 计算线性模型的预测值
            linear_model = np.dot(X, self.weights) + self.bias
            y_pred = self.sigmoid(linear_model)

            # 计算梯度
            dw = (1 / m) * np.dot(X.T, (y_pred - y))
            db = (1 / m) * np.sum(y_pred - y)

            # 更新权重和偏差
            self.weights -= self.learning_rate * dw
            self.bias -= self.learning_rate * db

            # 每100次迭代打印一次损失
            if i % 100 == 0:
                cost = self.compute_cost(y, y_pred)
                print(f"Iteration {i}: Cost {cost}")
3.4 编写模型预测方法

逻辑回归的预测输出是一个概率值,可以通过设置一个阈值(如0.5)来决定样本属于哪个类别。

python 复制代码
    def predict(self, X):
        # 预测函数
        linear_model = np.dot(X, self.weights) + self.bias
        y_pred = self.sigmoid(linear_model)
        return [1 if i > 0.5 else 0 for i in y_pred]

4. 逻辑回归模型的性能评估

为了评估逻辑回归模型的性能,我们使用准确率和混淆矩阵。

4.1 准确率与混淆矩阵

准确率表示正确预测的比例,混淆矩阵能更清晰地展示模型的分类表现。

python 复制代码
from sklearn.metrics import accuracy_score, confusion_matrix

# 模型训练与预测
model = LogisticRegression(learning_rate=0.1, n_iterations=1000)
model.fit(X_train, y_train)
predictions = model.predict(X_test)

# 计算准确率和混淆矩阵
accuracy = accuracy_score(y_test, predictions)
conf_matrix = confusion_matrix(y_test, predictions)

print(f"Accuracy: {accuracy}")
print(f"Confusion Matrix:\n{conf_matrix}")
4.2

交叉验证

交叉验证通过多次数据划分和训练,得到模型更加稳定和可靠的性能评价。


5. 完整代码实现

以下是逻辑回归模型的完整代码实现:

python 复制代码
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score, confusion_matrix

class LogisticRegression:
    def __init__(self, learning_rate=0.01, n_iterations=1000):
        self.learning_rate = learning_rate
        self.n_iterations = n_iterations
        self.weights = None
        self.bias = None

    def sigmoid(self, z):
        return 1 / (1 + np.exp(-z))

    def compute_cost(self, y, y_pred):
        m = len(y)
        cost = (-1 / m) * np.sum(y * np.log(y_pred) + (1 - y) * np.log(1 - y_pred))
        return cost

    def fit(self, X, y):
        m, n = X.shape
        self.weights = np.zeros(n)
        self.bias = 0

        for i in range(self.n_iterations):
            linear_model = np.dot(X, self.weights) + self.bias
            y_pred = self.sigmoid(linear_model)

            dw = (1 / m) * np.dot(X.T, (y_pred - y))
            db = (1 / m) * np.sum(y_pred - y)

            self.weights -= self.learning_rate * dw
            self.bias -= self.learning_rate * db

            if i % 100 == 0:
                cost = self.compute_cost(y, y_pred)
                print(f"Iteration {i}: Cost {cost}")

    def predict(self, X):
        linear_model = np.dot(X, self.weights) + self.bias
        y_pred = self.sigmoid(linear_model)
        return [1 if i > 0.5 else 0 for i in y_pred]

# 数据准备
np.random.seed(0)
X = np.random.randn(100, 2)
y = (X[:, 0] + X[:, 1] > 0).astype(int)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# 训练与评估
model = LogisticRegression(learning_rate=0.1, n_iterations=1000)
model.fit(X_train, y_train)
predictions = model.predict(X_test)

accuracy = accuracy_score(y_test, predictions)
conf_matrix = confusion_matrix(y_test, predictions)

print(f"Accuracy: {accuracy}")
print(f"Confusion Matrix:\n{conf_matrix}")

6. 实验与结果分析

在不同的学习率、迭代次数、数据分布下,我们可以调整模型参数并观察损失函数的变化。


7. 总结

本文从零开始用Python实现了逻辑回归模型,包括数学原理、代码实现和性能评估。通过这些步骤,读者可以深入理解逻辑回归的工作原理,并掌握如何从头构建和优化分类模型。

相关推荐
敏编程8 分钟前
2024-2025, 四大翻译工具加AI翻译的深度对比
人工智能·翻译·谷歌翻译·gpt翻译
codists16 分钟前
《Django 5 By Example》阅读笔记:p165-p210
python·django
Eric.Lee202116 分钟前
conda创建 、查看、 激活、删除 python 虚拟环境
linux·开发语言·人工智能·python·conda
女王の专属领地36 分钟前
深入浅出《钉钉AI》产品体验报告
人工智能·钉钉·语音识别·ai协同办公
新智元37 分钟前
Grok 3证明黎曼猜想,训练遭灾难性事件?数学家称不夸张,两年内AI将解出千禧年难题
人工智能·后端
摆烂仙君41 分钟前
论文《基于现实迷宫地形的电脑鼠设计》深度分析(三)——环境感知驱动算法
人工智能·计算机视觉
B站计算机毕业设计超人42 分钟前
计算机毕业设计Python美食推荐系统 美团爬虫 美食可视化 机器学习 深度学习 混合神经网络推荐算法 Hadoop Spark 人工智能 大数据毕业设计
大数据·人工智能·爬虫·python·深度学习·机器学习·课程设计
刀鋒偏冷1 小时前
python核心语法(二)
python
说私域1 小时前
社交电商的优势及其与 AI 智能名片小程序、S2B2C 商城系统的融合发展
人工智能·小程序