路径规划——RRT*算法

路径规划------RRT*算法

算法原理

RRT Star 算法是一种渐近最优的路径规划算法,它是 RRT 算法的优化版本。RRT Star 算法通过不断地迭代和优化,最终可以得到一条从起点到目标点的最优路径。

在学习RRT Star 算法之前最好先学习一下RRT原始算法:RRT算法

与RRT 算法相比,RRT Star 算法的主要不同之处在于它对已构建的路径进行优化,以提高搜索效率和精度。RRT Star算法与RRT算法的区别主要在于重新选择父节点和重新布线两个方面。

1.重新选择父节点过程

在新产生的节点node_new附近以定义的半径范围内寻找"近邻",作为替换父节点的备选。依次计算"近邻"节点到起点的路径代价加上到每个"近邻"的路径代价,具体过程如下图:

在上图中的这种情况下,以节点4作为node_new节点的父节点时路径代价是最小的,因此当前随机树的结构无需改动。

如果是下图的情况:

此时,以节点6作为node_new节点的父节点时的路径代价是最小的,因此进行随机树结构改动为如下图所示:

2.重新布线过程

在为node_new节点重新选择父节点后,为了进一步使随机树节点间的代价尽量小,为随机树重新布线。如果"近邻节点"的父节点改为node_new节点可以减小路径代价,则进行更改。如下图所示:

原来的路径情况:

将近邻节点的父节点改为node_new节点后的路径情况:

可以发现将节点6和8的父节点改为node_new后路径代价大于原来的路径代价,因此不需要改变节点6和8的父节点。

而对于节点4和7,将其父节点改为node_new后路径代价小于原来的路径代价,因此需要将节点4和7的父节点改为node_new,则新生成的随机树如下图所示:

这两部分的实现代码:

python 复制代码
for node_n in node_list:
    new_dist = self.distance(node_n,node_new)
    if new_dist < self.search_r and not self.isCollision(node_n, node_new):

        cost = node_n.cost + new_dist
        if node_new.cost > cost:
            # find who is the best parent of node_new
            node_new.parent = node_n.position
            node_new.cost = cost
            else:
                cost = node_new.cost + new_dist
                if node_n.cost > cost:
                    # find whose best parent is node_new
                    node_n.parent = node_new.position
                    node_n.cost = cost
                    else:
                        continue
相关推荐
呆呆的猫2 分钟前
【LeetCode】9、回文数
算法·leetcode·职场和发展
愚者大大5 分钟前
优化算法(SGD,RMSProp,Ada)
人工智能·算法·机器学习
Lenyiin9 分钟前
3354. 使数组元素等于零
c++·算法·leetcode·周赛
_nut_17 分钟前
图论基础算法/DFS+BFS+Trie树
算法·深度优先·图论
南宫生20 分钟前
力扣-图论-70【算法学习day.70】
java·学习·算法·leetcode·图论
项目申报小狂人1 小时前
广义正态分布优化算法(GNDO)Generalized Normal Distribution Optimization
算法·概率论
陵易居士1 小时前
力扣周赛T2-执行操作后不同元素的最大数量
数据结构·算法·leetcode
LabVIEW开发2 小时前
什么样的LabVIEW控制算自动控制?
算法·labview
liuming19922 小时前
Halcon中histo_2dim(Operator)算子原理及应用详解
图像处理·人工智能·深度学习·算法·机器学习·计算机视觉·视觉检测
sc写算法2 小时前
Hash 映射
数据结构·算法·哈希算法