hadoop3.x 新特性

hadoop3.x 新特性

Features Hadoop 2.x Hadoop 3.x
Minimum Required Java Version JDK 6 and above. JDK 8 is the minimum runtime version of JAVA required to run Hadoop 3.x as many dependency library files have been used from JDK 8.
Fault Tolerance Fault Tolerance is handled through replication leading to storage and network bandwidth overhead.(3个副本) Support for Erasure Coding(纠错码) in HDFS improves fault tolerance (0.5纠错码+1数据 = 1.5倍磁盘占用)
Storage Scheme Follows a 3x Replication Scheme for data recovery leading to 200% storage overhead. For instance, if there are 8 data blocks then a total of 24 blocks will occupy the storage space because of the 3x replication scheme. Storage overhead in Hadoop 3.0 is reduced to 50% with support for Erasure Coding. In this case, if here are 8 data blocks then a total of only 12 blocks will occupy the storage space.
Change in Port Numbers Hadoop HDFS NameNode -8020 Hadoop HDFS DataNode -50010 Secondary NameNode HTTP -50091 Hadoop HDFS NameNode -9820 Hadoop HDFS DataNode -9866 Secondary NameNode HTTP -9869
YARN Timeline Service YARN timeline service introduced in Hadoop 2.0 has some scalability issues. YARN Timeline service has been enhanced with ATS v2 which improves the scalability and reliability.
Intra DataNode Balancing HDFS Balancer in Hadoop 2.0 caused skew within a DataNode because of addition or replacement of disks. Intra DataNode Balancing has been introduced in Hadoop 3.0 to address the intra-DataNode skews which occur when disks are added or replaced.
Number of NameNodes Hadoop 2.0 introduced a secondary namenode as standby.(一主一备) Hadoop 3.0 supports 2 or more NameNodes.(一主多备)
Heap Size In Hadoop 2.0 , for Java and Hadoop tasks, the heap size needs to be set through two similar properties mapreduce.{map,reduce}.java. Opts and mapreduce.{map,reduce}.memory.mb In Hadoop 3.0, heap size or mapreduce.*.memory.mb is derived automatically.
hdfs HA 逻辑
  1. 增加用于主备之间信息共享推送的 JournalNode
  2. 增加用于选主决策的 zookeeper 集群:ha.zookeeper.quorum 配置
  3. 增加用于监控同机器上的 namenode,试图选举,切换本地 namenode 的 active,standby 状态的zookeeper failover controller(zkfc)进程:QuorumPeerMain
相关推荐
aigcapi3 小时前
[深度观察] RAG 架构重塑流量分发:2025 年 GEO 优化技术路径与头部服务商选型指南
大数据·人工智能·架构
山峰哥4 小时前
SQL调优核心战法——索引失效场景与Explain深度解析
大数据·汇编·数据库·sql·编辑器·深度优先
hqyjzsb6 小时前
从爱好到专业:AI初学者如何跨越CAIE认证的理想与现实鸿沟
大数据·c语言·人工智能·信息可视化·职场和发展·excel·业界资讯
袋鼠云数栈6 小时前
企业数据资产管理核心框架:L1-L5分层架构解析
大数据·人工智能·架构
zxsz_com_cn6 小时前
设备预测性维护怎么做?预测性维护案例详解
大数据·人工智能
G皮T6 小时前
【Elasticsearch】查询性能调优(四):计数的精确性探讨
大数据·elasticsearch·搜索引擎·全文检索·es·性能·opensearch
十月南城6 小时前
ES性能与可用性——分片、副本、路由与聚合的调度逻辑与成本
大数据·elasticsearch·搜索引擎
阿坤带你走近大数据7 小时前
大数据行业中,什么是拉链表?具体怎么做?
大数据
数字化顾问8 小时前
(100页PPT)未来工厂大数据应用专题建设解决方案(附下载方式)
大数据
tiannian12209 小时前
如何选择适合企业的RFID系统解决方案?
大数据·人工智能