【Pytorch】torch.nn.functional模块中的非线性激活函数

在使用torch.nn.functional模块时,需要导入包:

python 复制代码
from torch.nn import functional

以下是常见激活函数的介绍以及对应的代码示例:

tanh (双曲正切)

输出范围:(-1, 1)

特点:中心对称,适合处理归一化后的数据。

公式:

python 复制代码
import torch
x = torch.tensor([-2.0, -1.0, 0.0, 1.0, 2.0])
y = torch.nn.funcationl.tanh(x)
print(y)  # 输出:tensor([-0.9640, -0.7616,  0.0000,  0.7616,  0.9640])

sigmoid (S形函数)

输出范围:(0, 1)

特点:用于将输入映射到概率值,但可能会导致梯度消失问题。

公式:

python 复制代码
y = torch.nn.funcational.sigmoid(x)
print(y)  # 输出:tensor([0.1192, 0.2689, 0.5000, 0.7311, 0.8808])

SiLU (Sigmoid Linear Unit,也称Swish)

输出范围:(0, x)

特点:结合了线性和非线性特性,效果较好。

公式:silu(x) = x * sigmoid(x)

python 复制代码
y = torch.nn.funcationl.silu(x)
print(y)  # 输出:tensor([-0.2384, -0.2689,  0.0000,  0.7311,  1.7616])

GELU (Gaussian Error Linear Unit)

输出范围:接近ReLU,但更加平滑。

特点:常用于Transformer模型。

公式:近似为:gelu(x) ≈ x * sigmoid(1.702 * x)

python 复制代码
y = torch.nn.functional.gelu(x)
print(y)  # 输出:tensor([-0.0454, -0.1588,  0.0000,  0.8413,  1.9546])

ReLU (Rectified Linear Unit)

输出范围:[0, +∞)

特点:简单高效,是最常用的激活函数之一。

公式:relu(x) = max(0, x)

python 复制代码
y = torch.nn.funcationl.relu(x)
print(y)  # 输出:tensor([0., 0., 0., 1., 2.])

ReLU_ (In-place ReLU)

输出范围:[0, +∞)

特点:修改原张量而不是生成新的张量,节省内存。

python 复制代码
x.relu_()  # 注意:会改变x本身
print(x)  # x的值被修改为:tensor([0., 0., 0., 1., 2.])

Leaky ReLU

输出范围:(-∞, +∞)

特点:允许负值有较小的输出,避免死神经元问题。

公式:leaky_relu(x) = x if x > 0 else alpha * x

python 复制代码
x = torch.tensor([-2.0, -1.0, 0.0, 1.0, 2.0])
y = torch.nn.functional.leaky_relu(x, negative_slope=0.01)
print(y)  # 输出:tensor([-0.0200, -0.0100,  0.0000,  1.0000,  2.0000])

Leaky ReLU_ (In-place Leaky ReLU)

特点:和ReLU_一样会修改原张量。

python 复制代码
x.leaky_relu_(negative_slope=0.01)
print(x)  # x的值被修改

Softmax

输出范围:(0, 1),且所有输出的和为1。

特点:常用于多分类任务的最后一层。

公式:

python 复制代码
x = torch.tensor([1.0, 2.0, 3.0])
y = torch.nn.functional.softmax(x, dim=0)
print(y)  # 输出:tensor([0.0900, 0.2447, 0.6652])

Threshold

输出范围:手动设置的范围。

特点:小于阈值的数被置为设定值,大于等于阈值的数保持不变。

python 复制代码
x = torch.tensor([-1.0, 0.0, 1.0, 2.0])
y = torch.nn.functional.threshold(x, threshold=0.5, value=0.0)
print(y)  # 输出:tensor([0., 0., 0., 2.])

Normalize

功能:将张量的值标准化到指定范围。

公式:normalize(x) = x / max(||x||, eps)

python 复制代码
x = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
y = torch.nn.functional.normalize(x, p=2, dim=1)
print(y)  # 输出:标准化到单位向量
相关推荐
CoovallyAIHub3 分钟前
MAR-YOLOv9:革新农业检测,YOLOv9的“低调”逆袭
深度学习·算法·计算机视觉
昇腾知识体系4 分钟前
vLLM-Ascend环境部署:安装步骤汇总
人工智能
da_vinci_x6 分钟前
PS 生成式扩展:从 iPad 到带鱼屏,游戏立绘“全终端”适配流
前端·人工智能·游戏·ui·aigc·技术美术·游戏美术
铅笔侠_小龙虾10 分钟前
深度学习理论推导--最小二乘法
人工智能·深度学习·机器学习
All The Way North-14 分钟前
PyTorch nn.L1Loss 完全指南:MAE 原理、梯度计算与不可导点处理详解
pytorch·深度学习·机器学习·mae损失函数·l1loss损失函数
LDG_AGI15 分钟前
【推荐系统】深度学习训练框架(十三):模型输入——《特征索引》与《特征向量》的边界
人工智能·pytorch·分布式·深度学习·算法·机器学习
CoovallyAIHub16 分钟前
如何让SAM3在医学图像上比专用模型还强?一个轻量Adapter如何让它“秒变”专家?
深度学习·算法·计算机视觉
小女孩真可爱24 分钟前
大模型学习记录(八)---------RAG评估
linux·人工智能·python
阿里云大数据AI技术24 分钟前
MaxCompute SQL AI:让 SQL 成为你的 AI 语言
人工智能·sql
www76929 分钟前
从神经科学到软件工程:一个智能体架构的设计反思
人工智能