更多AI开源软件:
AI开源 - 小众AIhttps://www.aiinn.cn/sources
与你的 SQL 数据库聊天。该项目使用 LLM+RAG+数据库技术,让用户能够通过自然语言查询 SQL 数据库,用生成的 SQL 回答你的问题。
Vanna 通过两个简单的步骤工作 - 在您的数据上训练 RAG"模型",然后提出问题,这些问题将返回 SQL 查询,这些查询可以设置为在您的数据库上自动运行。
主要功能
Supported LLMs
Supported VectorStores
Supported Databases
- PostgreSQL
- MySQL
- PrestoDB
- Apache Hive
- ClickHouse
- Snowflake
- Oracle
- Microsoft SQL Server
- BigQuery
- SQLite
- DuckDB
安装使用
安装
有关所需数据库、LLM 等的详细信息,请参阅文档。
pip install vanna
有许多可选软件包可以安装,因此请参阅文档了解更多详细信息。
调用
如果要自定义 LLM 或向量数据库,请参阅文档。
# The import statement will vary depending on your LLM and vector database. This is an example for OpenAI + ChromaDB
from vanna.openai.openai_chat import OpenAI_Chat
from vanna.chromadb.chromadb_vector import ChromaDB_VectorStore
class MyVanna(ChromaDB_VectorStore, OpenAI_Chat):
def __init__(self, config=None):
ChromaDB_VectorStore.__init__(self, config=config)
OpenAI_Chat.__init__(self, config=config)
vn = MyVanna(config={'api_key': 'sk-...', 'model': 'gpt-4-...'})
# See the documentation for other options
训练
根据您的使用案例,您可能需要也可能不需要运行这些命令。有关更多详细信息,请参阅文档。vn.train
显示这些语句是为了让您了解其工作原理。
使用 DDL 语句进行训练
DDL 语句包含有关数据库中的表名、列、数据类型和关系的信息。
vn.train(ddl="""
CREATE TABLE IF NOT EXISTS my-table (
id INT PRIMARY KEY,
name VARCHAR(100),
age INT
)
""")
使用文档进行训练
有时,您可能希望添加有关您的业务术语或定义的文档。
vn.train(documentation="Our business defines XYZ as ...")
使用 SQL 进行训练
您还可以将 SQL 查询添加到训练数据中。如果您已经有一些查询,这将非常有用。您只需从编辑器中复制并粘贴这些内容即可开始生成新的 SQL。
vn.train(sql="SELECT name, age FROM my-table WHERE name = 'John Doe'")
提问
vn.ask("What are the top 10 customers by sales?")
您将获得 SQL
SELECT c.c_name as customer_name,
sum(l.l_extendedprice * (1 - l.l_discount)) as total_sales
FROM snowflake_sample_data.tpch_sf1.lineitem l join snowflake_sample_data.tpch_sf1.orders o
ON l.l_orderkey = o.o_orderkey join snowflake_sample_data.tpch_sf1.customer c
ON o.o_custkey = c.c_custkey
GROUP BY customer_name
ORDER BY total_sales desc limit 10;