opencv(c++)---访问图像像素、增加白噪点

opencv(c++)---访问图像像素、增加白噪点

c++ 复制代码
// 头文件保护
#pragma once

// 引入OpenCV库和其他必要的头文件
#include <opencv2/opencv.hpp>
#include <iostream>
#include <random>

using namespace cv;  // 使用OpenCV命名空间
using namespace std; // 使用标准命名空间

// 函数: 添加椒盐噪声
// 参数:
// - Mat img: 输入图像
// - int n: 要添加的噪声点数量
void Salt(Mat img, int n)
{
    // 创建随机数生成器
    default_random_engine e; // 默认随机数生成器
    uniform_int_distribution<int> randomrows(0, img.rows - 1); // 随机生成行索引
    uniform_int_distribution<int> randomcols(0, img.cols - 1); // 随机生成列索引

    int i, j;

    // 循环添加n个椒盐噪声点
    for (int k = 0; k < n; k++)
    {
        // 生成随机的行和列索引
        i = randomrows(e);
        j = randomcols(e);
        
        // 判断图像的通道数
        if(img.channels() == 1) // 灰度图像
        {
            img.at<uchar>(i, j) = 255; // 将随机位置的像素值设置为255(白色)
        }
        else if (img.channels() == 3) // BGR彩色图像
        {
            img.at<Vec3b>(i, j)[0] = 255; // 蓝色通道设置为255
            img.at<Vec3b>(i, j)[1] = 255; // 绿色通道设置为255
            img.at<Vec3b>(i, j)[2] = 255; // 红色通道设置为255
        }
    }
}

// 主函数
int main()
{
    // 读取图像
    Mat src = imread("D:/123.jpg");

    // 检查图像是否成功读取
    if (src.empty())
    {
        cout << "读取图像失败" << endl; // 输出错误信息
        return -1; // 返回 -1 表示失败
    }

    // 显示原始图像
    imshow("原始图", src);

    // 调用Salt函数添加2000个椒盐噪声点
    Salt(src, 2000);

    // 显示添加噪声后的图像
    imshow("椒盐噪声图", src);

    // 等待按键
    waitKey(0);
    return 0; // 返回 0 表示成功
}

函数解释

Salt(Mat img, int n)

该函数用于向输入图像添加椒盐噪声。椒盐噪声是常见的噪声类型,表现为随机出现的白色或黑色像素点。参数img是输入的图像,参数n指定要添加的噪声点的数量。函数通过随机生成像素位置,设置这些位置的颜色值为白色(255),实现椒盐噪声的效果。

相关推荐
聚客AI25 分钟前
PyTorch玩转CNN:卷积操作可视化+五大经典网络复现+分类项目
人工智能·pytorch·神经网络
程序员岳焱28 分钟前
深度剖析:Spring AI 与 LangChain4j,谁才是 Java 程序员的 AI 开发利器?
java·人工智能·后端
愚润求学29 分钟前
【C++】类型转换
开发语言·c++
柠檬味拥抱29 分钟前
AI智能体在金融决策系统中的自主学习与行为建模方法探讨
人工智能
@我漫长的孤独流浪37 分钟前
数据结构测试模拟题(4)
数据结构·c++·算法
智驱力人工智能40 分钟前
智慧零售管理中的客流统计与属性分析
人工智能·算法·边缘计算·零售·智慧零售·聚众识别·人员计数
csdnzzt1 小时前
从内存角度透视现代C++关键特性
c++
workflower1 小时前
以光量子为例,详解量子获取方式
数据仓库·人工智能·软件工程·需求分析·量子计算·软件需求
壹氿1 小时前
Supersonic 新一代AI数据分析平台
人工智能·数据挖掘·数据分析
张较瘦_1 小时前
[论文阅读] 人工智能 | 搜索增强LLMs的用户偏好与性能分析
论文阅读·人工智能