opencv(c++)---访问图像像素、增加白噪点

opencv(c++)---访问图像像素、增加白噪点

c++ 复制代码
// 头文件保护
#pragma once

// 引入OpenCV库和其他必要的头文件
#include <opencv2/opencv.hpp>
#include <iostream>
#include <random>

using namespace cv;  // 使用OpenCV命名空间
using namespace std; // 使用标准命名空间

// 函数: 添加椒盐噪声
// 参数:
// - Mat img: 输入图像
// - int n: 要添加的噪声点数量
void Salt(Mat img, int n)
{
    // 创建随机数生成器
    default_random_engine e; // 默认随机数生成器
    uniform_int_distribution<int> randomrows(0, img.rows - 1); // 随机生成行索引
    uniform_int_distribution<int> randomcols(0, img.cols - 1); // 随机生成列索引

    int i, j;

    // 循环添加n个椒盐噪声点
    for (int k = 0; k < n; k++)
    {
        // 生成随机的行和列索引
        i = randomrows(e);
        j = randomcols(e);
        
        // 判断图像的通道数
        if(img.channels() == 1) // 灰度图像
        {
            img.at<uchar>(i, j) = 255; // 将随机位置的像素值设置为255(白色)
        }
        else if (img.channels() == 3) // BGR彩色图像
        {
            img.at<Vec3b>(i, j)[0] = 255; // 蓝色通道设置为255
            img.at<Vec3b>(i, j)[1] = 255; // 绿色通道设置为255
            img.at<Vec3b>(i, j)[2] = 255; // 红色通道设置为255
        }
    }
}

// 主函数
int main()
{
    // 读取图像
    Mat src = imread("D:/123.jpg");

    // 检查图像是否成功读取
    if (src.empty())
    {
        cout << "读取图像失败" << endl; // 输出错误信息
        return -1; // 返回 -1 表示失败
    }

    // 显示原始图像
    imshow("原始图", src);

    // 调用Salt函数添加2000个椒盐噪声点
    Salt(src, 2000);

    // 显示添加噪声后的图像
    imshow("椒盐噪声图", src);

    // 等待按键
    waitKey(0);
    return 0; // 返回 0 表示成功
}

函数解释

Salt(Mat img, int n)

该函数用于向输入图像添加椒盐噪声。椒盐噪声是常见的噪声类型,表现为随机出现的白色或黑色像素点。参数img是输入的图像,参数n指定要添加的噪声点的数量。函数通过随机生成像素位置,设置这些位置的颜色值为白色(255),实现椒盐噪声的效果。

相关推荐
行码棋2 分钟前
【机器学习】回归模型(线性回归+逻辑回归)原理详解
人工智能·机器学习·线性回归
睡觉然后上课17 分钟前
C++笔试面试题
c语言·c++·面试
狐凄27 分钟前
AI 在软件开发
人工智能
学步_技术29 分钟前
自动驾驶系列—自动驾驶数据脱敏:保护隐私与数据安全的关键技术
人工智能·机器学习·自动驾驶·数据安全·数据脱敏
学步_技术29 分钟前
自动驾驶系列—深入解析自动驾驶车联网技术及其应用场景
人工智能·机器学习·自动驾驶·车联网
whaosoft-14330 分钟前
51c自动驾驶~合集27
人工智能
数据智研37 分钟前
【数据分享】中国食品工业年鉴(1984-2023) PDF
大数据·人工智能·pdf
chenchihwen38 分钟前
大型语言模型综述 A Survey of Large Language Models
人工智能·语言模型·自然语言处理
Ruannn(努力版)40 分钟前
数据挖掘复习
人工智能·数据挖掘
OT.Ter41 分钟前
基于FastAPI实现本地大模型API封装调用
人工智能·算法·大模型·fastapi