机器学习极简史

机器学习的发展还不到100年,在这几十年的时间里,不同的时间阶段产生了不同的流派,抢占一时风头。但随着基础物理技术的进步,部分流派也慢慢归于历史。但它们的思想,当时面临的问题,却给后续的机器学习人们,留下了宝贵的财富。

  • 在20世纪50年代到70年代初,人工智能处于"推理期",那时人们以为只要赋予机器逻辑推理能力,机器就能具有智能。
  • 从20世纪70年代中期开始,人工智能研究进入"知识期",在这一时期大量专家系统问世。
  • 在20世纪50年代中后期,基于神经网络的"连接主义"( connectionism)学习开始出现。
    • 代表性的工作有"感知机"(perceptron)。
  • 在20世纪六七十年代,基于逻辑表示的"符号主义"(symbolism)学习技术蓬勃发展。
  • 在20世纪80年代,"从样例中学习"的一大主流是符号主义学习;
    • 其代表包括决策树(decision tree)和基于逻辑的学习。
  • 在20世纪90年代中期之前,"从样例中学习"的另一主流技术是基于神经网络的连接主义学习。连接主义学习产生是"黑箱"模型。
  • 在20年的90年代中期,"统计学习"( statistical learning)闪亮登场宾馆迅速占据主流舞台,代表性技术是支持向量机(support vector machine,简称SVM)以及更一般的"核方法"(kernel methods)。
  • 在21世纪初,连接主义学习卷土重来,掀起了以"深度学习"为名的热潮。
相关推荐
千宇宙航2 小时前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发
IT古董2 小时前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(4)模型评价与调整(Model Evaluation & Tuning)
神经网络·机器学习·回归
onceco2 小时前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
jndingxin5 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉
Sweet锦5 小时前
零基础保姆级本地化部署文心大模型4.5开源系列
人工智能·语言模型·文心一言
hie988946 小时前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab
晨同学03276 小时前
opencv的颜色通道问题 & rgb & bgr
人工智能·opencv·计算机视觉
蓝婷儿6 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
大千AI助手6 小时前
PageRank:互联网的马尔可夫链平衡态
人工智能·机器学习·贝叶斯·mc·pagerank·条件概率·马尔科夫链
小和尚同志7 小时前
Cline | Cline + Grok3 免费 AI 编程新体验
人工智能·aigc