pytorch训练的双卡,一个显卡占有20GB,另一个卡占有8GB,怎么均衡?

在PyTorch中实现多卡训练时,如果出现显存不均衡的问题,可以通过以下方法尝试均衡显存使用:

1. 调整DataParallel或者DistributedDataParallel策略

DataParallel :默认情况下,DataParallel会将模型放在第一块卡上,然后将输入数据均匀地分配到所有卡上。这可能会导致第一块卡显存占用过多。可以通过以下方式进行优化:

python 复制代码
import torch
model = MyModel()  # 替换为你的模型
model = torch.nn.DataParallel(model, device_ids=[0, 1])  # 将 device_ids 修改为你使用的 GPU
model.to('cuda')

DistributedDataParallel (推荐) :相比DataParallelDistributedDataParallel更高效,它会将模型均匀分布到每张卡上,避免单一GPU显存过载。使用方法如下:

python 复制代码
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP

# 初始化
dist.init_process_group("nccl", rank=rank, world_size=world_size)
model = MyModel().to(rank)
ddp_model = DDP(model, device_ids=[rank])

2. 手动分配模型层到不同GPU

如果模型结构较为复杂且分配不均,可以手动将模型的不同层放到不同的GPU上。这样可以更灵活地控制各个GPU的显存占用,例如:

python 复制代码
class MyModel(torch.nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.layer1 = torch.nn.Linear(1024, 1024).to('cuda:0')
        self.layer2 = torch.nn.Linear(1024, 1024).to('cuda:1')

    def forward(self, x):
        x = self.layer1(x)
        x = x.to('cuda:1')  # 将数据传递到下一张卡
        x = self.layer2(x)
        return x

3. 减少数据的批量大小

可以尝试减少训练数据的批量大小(batch size),这可以在一定程度上减轻显存的负担,让每张卡占用更接近。

4. 检查GPU显存碎片化情况

显存不均衡有时是因为显存碎片化造成的,可以在训练开始前调用torch.cuda.empty_cache()来清空显存缓存。碎片化严重时,显存利用率会变差,导致显存不均衡。

5. 升级到更新的PyTorch版本

PyTorch的多卡支持在新版本中不断优化,如果你的PyTorch版本较旧,升级可能带来显存均衡和利用率的改善。

相关推荐
独孤--蝴蝶1 分钟前
AI人工智能-机器学习-第一周(小白)
人工智能·机器学习
西柚小萌新3 分钟前
【深入浅出PyTorch】--上采样+下采样
人工智能·pytorch·python
丁学文武30 分钟前
大语言模型(LLM)是“预制菜”? 从应用到底层原理,在到中央厨房的深度解析
人工智能·语言模型·自然语言处理·大语言模型·大模型应用·预制菜
fie888935 分钟前
基于MATLAB的声呐图像特征提取与显示
开发语言·人工智能
文火冰糖的硅基工坊2 小时前
[嵌入式系统-100]:常见的IoT(物联网)开发板
人工智能·物联网·架构
刘晓倩2 小时前
实战任务二:用扣子空间通过任务提示词制作精美PPT
人工智能
shut up2 小时前
LangChain - 如何使用阿里云百炼平台的Qwen-plus模型构建一个桌面文件查询AI助手 - 超详细
人工智能·python·langchain·智能体
Hy行者勇哥2 小时前
公司全场景运营中 PPT 的类型、功能与作用详解
大数据·人工智能
宝贝儿好3 小时前
【python】第五章:python-GUI编程
python·pyqt
FIN66683 小时前
昂瑞微:实现精准突破,攻坚射频“卡脖子”难题
前端·人工智能·安全·前端框架·信息与通信