pytorch训练的双卡,一个显卡占有20GB,另一个卡占有8GB,怎么均衡?

在PyTorch中实现多卡训练时,如果出现显存不均衡的问题,可以通过以下方法尝试均衡显存使用:

1. 调整DataParallel或者DistributedDataParallel策略

DataParallel :默认情况下,DataParallel会将模型放在第一块卡上,然后将输入数据均匀地分配到所有卡上。这可能会导致第一块卡显存占用过多。可以通过以下方式进行优化:

python 复制代码
import torch
model = MyModel()  # 替换为你的模型
model = torch.nn.DataParallel(model, device_ids=[0, 1])  # 将 device_ids 修改为你使用的 GPU
model.to('cuda')

DistributedDataParallel (推荐) :相比DataParallelDistributedDataParallel更高效,它会将模型均匀分布到每张卡上,避免单一GPU显存过载。使用方法如下:

python 复制代码
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP

# 初始化
dist.init_process_group("nccl", rank=rank, world_size=world_size)
model = MyModel().to(rank)
ddp_model = DDP(model, device_ids=[rank])

2. 手动分配模型层到不同GPU

如果模型结构较为复杂且分配不均,可以手动将模型的不同层放到不同的GPU上。这样可以更灵活地控制各个GPU的显存占用,例如:

python 复制代码
class MyModel(torch.nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.layer1 = torch.nn.Linear(1024, 1024).to('cuda:0')
        self.layer2 = torch.nn.Linear(1024, 1024).to('cuda:1')

    def forward(self, x):
        x = self.layer1(x)
        x = x.to('cuda:1')  # 将数据传递到下一张卡
        x = self.layer2(x)
        return x

3. 减少数据的批量大小

可以尝试减少训练数据的批量大小(batch size),这可以在一定程度上减轻显存的负担,让每张卡占用更接近。

4. 检查GPU显存碎片化情况

显存不均衡有时是因为显存碎片化造成的,可以在训练开始前调用torch.cuda.empty_cache()来清空显存缓存。碎片化严重时,显存利用率会变差,导致显存不均衡。

5. 升级到更新的PyTorch版本

PyTorch的多卡支持在新版本中不断优化,如果你的PyTorch版本较旧,升级可能带来显存均衡和利用率的改善。

相关推荐
Xy-unu6 分钟前
[VL|RIS] RSRefSeg 2
论文阅读·人工智能·transformer·论文笔记·分割
夏日麋鹿~15 分钟前
逐时nc数据批量处理为日平均
python
程序员三明治20 分钟前
Python编辑器的安装及配置(Pycharm、Jupyter的安装)从0带你配置,小土堆视频
python·pycharm·编辑器
理想国的女研究僧21 分钟前
Jupyter Notebook操作指南(1)
ide·python·学习·jupyter
酷飞飞29 分钟前
PyQt 界面布局与交互组件使用指南
python·qt·交互·pyqt
GilgameshJSS1 小时前
【学习K230-例程19】GT6700-TCP-Client
网络·python·网络协议·学习·tcp/ip
yuanpan1 小时前
python标准库有哪些模块,简单总结下。
开发语言·python
zzu123zsw1 小时前
第五章:自动化脚本开发
人工智能·自动化
IT_陈寒1 小时前
Python 3.12 新特性实战:10个性能优化技巧让你的代码快如闪电⚡
前端·人工智能·后端
程序员杰哥1 小时前
什么是Jmeter? Jmeter工作原理是什么?
自动化测试·软件测试·python·测试工具·jmeter·职场和发展·测试用例