pytorch训练的双卡,一个显卡占有20GB,另一个卡占有8GB,怎么均衡?

在PyTorch中实现多卡训练时,如果出现显存不均衡的问题,可以通过以下方法尝试均衡显存使用:

1. 调整DataParallel或者DistributedDataParallel策略

DataParallel :默认情况下,DataParallel会将模型放在第一块卡上,然后将输入数据均匀地分配到所有卡上。这可能会导致第一块卡显存占用过多。可以通过以下方式进行优化:

python 复制代码
import torch
model = MyModel()  # 替换为你的模型
model = torch.nn.DataParallel(model, device_ids=[0, 1])  # 将 device_ids 修改为你使用的 GPU
model.to('cuda')

DistributedDataParallel (推荐) :相比DataParallelDistributedDataParallel更高效,它会将模型均匀分布到每张卡上,避免单一GPU显存过载。使用方法如下:

python 复制代码
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP

# 初始化
dist.init_process_group("nccl", rank=rank, world_size=world_size)
model = MyModel().to(rank)
ddp_model = DDP(model, device_ids=[rank])

2. 手动分配模型层到不同GPU

如果模型结构较为复杂且分配不均,可以手动将模型的不同层放到不同的GPU上。这样可以更灵活地控制各个GPU的显存占用,例如:

python 复制代码
class MyModel(torch.nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.layer1 = torch.nn.Linear(1024, 1024).to('cuda:0')
        self.layer2 = torch.nn.Linear(1024, 1024).to('cuda:1')

    def forward(self, x):
        x = self.layer1(x)
        x = x.to('cuda:1')  # 将数据传递到下一张卡
        x = self.layer2(x)
        return x

3. 减少数据的批量大小

可以尝试减少训练数据的批量大小(batch size),这可以在一定程度上减轻显存的负担,让每张卡占用更接近。

4. 检查GPU显存碎片化情况

显存不均衡有时是因为显存碎片化造成的,可以在训练开始前调用torch.cuda.empty_cache()来清空显存缓存。碎片化严重时,显存利用率会变差,导致显存不均衡。

5. 升级到更新的PyTorch版本

PyTorch的多卡支持在新版本中不断优化,如果你的PyTorch版本较旧,升级可能带来显存均衡和利用率的改善。

相关推荐
bst@微胖子19 分钟前
Python高级语法之selenium
开发语言·python·selenium
Luis Li 的猫猫1 小时前
深度学习中的知识蒸馏
人工智能·经验分享·深度学习·学习·算法
查理零世1 小时前
【蓝桥杯集训·每日一题2025】 AcWing 6118. 蛋糕游戏 python
python·算法·蓝桥杯
魔尔助理顾问2 小时前
一个简洁高效的Flask用户管理示例
后端·python·flask
java1234_小锋2 小时前
一周学会Flask3 Python Web开发-request请求对象与url传参
开发语言·python·flask·flask3
木觞清3 小时前
PyTorch与TensorFlow的对比:哪个框架更适合你的项目?
人工智能·pytorch·tensorflow
诚信爱国敬业友善6 小时前
常见排序方法的总结归类
开发语言·python·算法
wyg_0311136 小时前
用deepseek学大模型04-模型可视化与数据可视化
人工智能·机器学习·信息可视化
架构默片7 小时前
【JAVA工程师从0开始学AI】,第五步:Python类的“七十二变“——当Java的铠甲遇见Python的液态金属
java·开发语言·python
陈敬雷-充电了么-CEO兼CTO7 小时前
DeepSeek核心算法解析:如何打造比肩ChatGPT的国产大模型
人工智能·神经网络·自然语言处理·chatgpt·大模型·aigc·deepseek