pytorch训练的双卡,一个显卡占有20GB,另一个卡占有8GB,怎么均衡?

在PyTorch中实现多卡训练时,如果出现显存不均衡的问题,可以通过以下方法尝试均衡显存使用:

1. 调整DataParallel或者DistributedDataParallel策略

DataParallel :默认情况下,DataParallel会将模型放在第一块卡上,然后将输入数据均匀地分配到所有卡上。这可能会导致第一块卡显存占用过多。可以通过以下方式进行优化:

python 复制代码
import torch
model = MyModel()  # 替换为你的模型
model = torch.nn.DataParallel(model, device_ids=[0, 1])  # 将 device_ids 修改为你使用的 GPU
model.to('cuda')

DistributedDataParallel (推荐) :相比DataParallelDistributedDataParallel更高效,它会将模型均匀分布到每张卡上,避免单一GPU显存过载。使用方法如下:

python 复制代码
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP

# 初始化
dist.init_process_group("nccl", rank=rank, world_size=world_size)
model = MyModel().to(rank)
ddp_model = DDP(model, device_ids=[rank])

2. 手动分配模型层到不同GPU

如果模型结构较为复杂且分配不均,可以手动将模型的不同层放到不同的GPU上。这样可以更灵活地控制各个GPU的显存占用,例如:

python 复制代码
class MyModel(torch.nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.layer1 = torch.nn.Linear(1024, 1024).to('cuda:0')
        self.layer2 = torch.nn.Linear(1024, 1024).to('cuda:1')

    def forward(self, x):
        x = self.layer1(x)
        x = x.to('cuda:1')  # 将数据传递到下一张卡
        x = self.layer2(x)
        return x

3. 减少数据的批量大小

可以尝试减少训练数据的批量大小(batch size),这可以在一定程度上减轻显存的负担,让每张卡占用更接近。

4. 检查GPU显存碎片化情况

显存不均衡有时是因为显存碎片化造成的,可以在训练开始前调用torch.cuda.empty_cache()来清空显存缓存。碎片化严重时,显存利用率会变差,导致显存不均衡。

5. 升级到更新的PyTorch版本

PyTorch的多卡支持在新版本中不断优化,如果你的PyTorch版本较旧,升级可能带来显存均衡和利用率的改善。

相关推荐
前端小趴菜054 分钟前
python - input()函数
python
大唐荣华10 分钟前
视觉语言模型(VLA)分类方法体系
人工智能·分类·机器人·具身智能
即兴小索奇12 分钟前
AI应用商业化加速落地 2025智能体爆发与端侧创新成增长引擎
人工智能·搜索引擎·ai·商业·ai商业洞察·即兴小索奇
程序员三藏20 分钟前
Selenium+python自动化测试:解决无法启动IE浏览器及报错问题
自动化测试·软件测试·python·selenium·测试工具·职场和发展·测试用例
NeilNiu25 分钟前
开源AI工具Midscene.js
javascript·人工智能·开源
瓦尔登湖50835 分钟前
DAY 40 训练和测试的规范写法
python
nju_spy42 分钟前
机器学习 - Kaggle项目实践(4)Toxic Comment Classification Challenge 垃圾评论分类问题
人工智能·深度学习·自然语言处理·tf-idf·南京大学·glove词嵌入·双头gru
计算机sci论文精选1 小时前
CVPR 2025 | 具身智能 | HOLODECK:一句话召唤3D世界,智能体的“元宇宙练功房”来了
人工智能·深度学习·机器学习·计算机视觉·机器人·cvpr·具身智能
站大爷IP1 小时前
Python中None与NoneType的真相:从单例对象到类型系统的深度解析
python
秋难降1 小时前
LRU缓存算法(最近最少使用算法)——工业界缓存淘汰策略的 “默认选择”
数据结构·python·算法