Spark中的Stage概念

Spark中的Stage概念

什么是Stage?

在Spark中,Stage 是作业(Job)执行过程中分解出的一个任务单元。可以把它理解为数据处理过程中的一个阶段,每个Stage执行一些计算任务,通常与某种类型的数据依赖数据分区有关。

一个 Job 会被拆分成多个 Stage,每个Stage内包含多个Task(任务),这些Task会并行执行。Stage的划分是基于数据的依赖关系,主要通过两种类型的依赖:窄依赖(Narrow Dependency)和宽依赖(Wide Dependency)。

Stage的执行过程

在Spark中,Stage 是由任务调度器(DAGScheduler)根据 DAG(有向无环图) 的拓扑关系来划分的。当Spark执行一个Job时,Job会被拆分成多个Stage,每个Stage的任务会并行执行,并且按照Stage的顺序依次执行。

  • 窄依赖(Narrow Dependency)
    每个父RDD的分区只会被一个子RDD的分区使用,这种依赖关系通常表示不需要进行数据的重新分区(例如 map、filter 操作)。
  • 宽依赖(Wide Dependency) : 子RDD的分区依赖于父RDD的所有分区,需要进行数据的重新分区(例如
    groupByKey、reduceByKey 操作)。这种依赖通常会触发 Shuffle 操作,即数据的重新分配和排序,进而导致Stage的划分。

Spark如何划分Stage?

  1. 窄依赖:

    当操作之间只有窄依赖时,Spark可以在一个Stage内顺利完成处理。例如,map、filter 等操作,它们只会对数据进行逐个分区的转换,因此可以在同一Stage内执行。

  2. 宽依赖:

    当涉及到宽依赖 时,Spark会把这些操作划分为不同的Stage,因为这类操作需要Shuffle,即将数据从不同的节点进行重新分配。例如,groupByKey 或 reduceByKey 操作需要跨分区进行数据的合并和排序,这就要求Spark执行一次Shuffle操作,随后会创建一个新的Stage来处理这部分操作。

  3. Shuffle:

    当Job中包含Shuffle操作时,每个Shuffle操作之前和之后都会有一个新的Stage。例如,reduceByKey 操作会触发一个Shuffle,因此这部分操作会被划分为一个Stage。Shuffle操作本质上是数据的重新分配。

Spark中的Stage类型

在Spark中,Stage通常被分为两种类型:ShuffleMapStageResultStage

  1. ShuffleMapStage:

    这种Stage是一个中间Stage,它的输出会用于下一个Stage的输入。

    它的任务是将数据通过Shuffle操作分发到下一个Stage。

    比如:reduceByKey 之前的操作,会生成一个ShuffleMapStage。

  2. ResultStage:

    这种Stage是最终输出结果的Stage,它的任务是将数据计算结果输出到最终的存储系统或返回给用户。

    每个Job至少有一个ResultStage,它的输出是整个Job的最终结果。

    比如:collect()、saveAsTextFile() 等操作通常会触发ResultStage。

Spark Stage的执行原理

Task的划分:

  • Spark会根据Stage的划分,将每个Stage拆分成多个Task。每个Task对应于一个数据分区(Partition),通常每个Task会并行处理一个数据分区。
  • ShuffleMapTask: 这是一个生成Shuffle数据的任务,通常出现在ShuffleMapStage中。
  • ResultTask: 这是一个处理最终结果的任务,通常出现在ResultStage中。

依赖关系:

Stage之间的依赖关系决定了执行顺序。如果一个Stage依赖于另一个Stage的输出,那么只有前一个Stage执行完成后,后一个Stage才能开始执行。

例子:Stage划分示例

假设我们有一个包含多个操作的Job:

scala 复制代码
val data = sc.parallelize(1 to 10)

// 操作1: map(窄依赖)
val mappedData = data.map(x => x * 2)

// 操作2: reduceByKey(宽依赖,需要Shuffle)
val reducedData = mappedData.map(x => (x, 1)).reduceByKey(_ + _)

// 操作3: collect(ResultStage)
reducedData.collect()

在这个例子中,执行的流程如下:

  1. Stage 1:data.map(x => x * 2),由于是窄依赖,它和后续的操作在同一个Stage中执行。
  2. Stage 2:reduceByKey(_ + _),因为是宽依赖,需要进行Shuffle操作,Spark会创建新的Stage进行处理。
  3. Stage 3:collect(),最终结果的输出,通常是ResultStage。
相关推荐
Elastic 中国社区官方博客16 分钟前
使用真实 Elasticsearch 进行高级集成测试
大数据·数据库·elasticsearch·搜索引擎·全文检索·jenkins·集成测试
一张假钞1 小时前
Spark SQL读写Hive Table部署
hive·sql·spark
好记性+烂笔头1 小时前
4 Spark Streaming
大数据·ajax·spark
好记性+烂笔头4 小时前
3 Flink 运行架构
大数据·架构·flink
字节侠5 小时前
Flink2支持提交StreamGraph到Flink集群
大数据·flink·streamgraph·flink2·jobgraph
好记性+烂笔头8 小时前
4 Hadoop 面试真题
大数据·hadoop·面试
好记性+烂笔头9 小时前
10 Flink CDC
大数据·flink
赵渝强老师10 小时前
【赵渝强老师】Spark RDD的依赖关系和任务阶段
大数据·缓存·spark
小小のBigData10 小时前
【2025年更新】1000个大数据/人工智能毕设选题推荐
大数据·人工智能·课程设计
risc12345612 小时前
【Elasticsearch 】悬挂索引(Dangling Indices)
大数据·elasticsearch·搜索引擎