Flink Joins

一、Regular Join

二、 Interval Join

让一条流去Join另一条流中前后一段时间内的数据。底层实现是同时保留2个流一定时间,然后这样一个流既可以关联另外一个流过去一段时间范围内的数据,还能关联另外一个流未来一段时间内的数据。未来的数据是指当前时刻,还没有到的数据。要做到这一点,必须要把当前流的数据也保留起来,等另外一个流的未来的数据到了,要通知到当前这条数据去重新关联一下。

sql 复制代码
CREATE TABLE show_log_table(
    log_id      BIGINT,
    show_params STRING,
    row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),
    WATERMARK FOR row_time AS row_time
) WITH (
  'connector' = 'datagen',
  'rows-per-second' = '5',
  'fields.show_params.length' = '1',
  'fields.log_id.min' = '1',
  'fields.log_id.max' = '100'
);

CREATE TABLE click_log_table(
    log_id       BIGINT,
    click_params STRING,
    row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),
    WATERMARK FOR row_time AS row_time
)
WITH (
    'connector' = 'datagen',
    'rows-per-second' = '5',
    'fields.click_params.length' = '1',
    'fields.log_id.min' = '1',
    'fields.log_id.max' = '10'
);

SELECT
    show_log_table.log_id as s_id,
    show_log_table.show_params as s_params,
    click_log_table.log_id as c_id,
    click_log_table.click_params as c_param
FROM show_log_table
INNER JOIN click_log_table
ON show_log_table.log_id = click_log_table.log_id
AND show_log_table.row_time BETWEEN click_log_table.row_time - INTERVAL '5' MINUTE
AND click_log_table.row_time + INTERVAL '5' MINUTE
;

三、Temporal Join

Temporal Join在离线概念中其实是没有类似的Join概念的,但是离线中常常会维护一种表叫做拉链快照表 ,使用明细表join拉链快照表的join方式就叫做Temporal Join。而 Flink SQL中也有对应的概念,表叫做 Versioned Table, 使用明细表 join Versioned Table的join操作就叫做Temporal Join。 Temporal Join中,Versioned Table其实就是对同一条key(在DDL中以primary key标记同一个key)的历史版本(根据时间划分版本)做一个维护,当有明细表Join这个表时,可以根据明细表中的时间版本选择Versioned Table对应时间区间为的快照数据进行join。

Temporal Join应用场景:比如常见的汇率数据(实时的根据率计算总金额),在12:00之前(事件时间),人民币和美元汇率是7:1,在12:00之后变为6:1,那么在12:00之前数据就要按照7:1进行计算,12:00之后就要按照6:1计算。在事件时间语义的任务中,事件时间12:00之前的数据,要按照7:1进行计算,12:00之后的数据,要按照6:1进行计算。这其实就是离线中快照的概念,维护具体汇率的表在Flink SQL体系中就叫做Versioned Table

四、Lookup Join

Lookup Join定义(支持Batch\Streaming):Lookup Join其实就是维表Join ,比如拿离线数仓来说,常常会有用户画像,设备画像等数据,而对应到实时数仓场景中,这种实时获取外部缓存的Join就叫做维表Join

Lookup Join应用场景:小伙伴萌会问,我们既然已经有了上面介绍召的Regular Join,Interval Join等,为啥还需要一种Lookup Join?因为上面说的这几种Join都是流与流之间的Join,而Lookup Join是流与Redis,Mysql,HBase这种存储介质的Join。Lookup的意思就是实时查找,而实时的画像数据一般都是存储在Redis,MysqI,HBase中,这就是Lookup Join的由来

参考:

https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/dev/table/sql/queries/joins/#joins

【Flink】第二十三篇:join 之 temporal join
FlinkSQL 几种join

相关推荐
华农DrLai14 小时前
Spark SQL Catalyst 优化器详解
大数据·hive·sql·flink·spark
岁岁种桃花儿14 小时前
Flink从入门到上天系列第一篇:搭建第一个Flink程序
大数据·linux·flink·数据同步
Hello.Reader1 天前
Flink ZooKeeper HA 实战原理、必配项、Kerberos、安全与稳定性调优
安全·zookeeper·flink
Hello.Reader1 天前
Flink 使用 Amazon S3 读写、Checkpoint、插件选择与性能优化
大数据·flink
Hello.Reader1 天前
Flink 对接 Google Cloud Storage(GCS)读写、Checkpoint、插件安装与生产配置指南
大数据·flink
Hello.Reader1 天前
Flink Kubernetes HA(高可用)实战原理、前置条件、配置项与数据保留机制
贪心算法·flink·kubernetes
wending-Y1 天前
记录一次排查Flink一直重启的问题
大数据·flink
Hello.Reader1 天前
Flink 对接 Azure Blob Storage / ADLS Gen2:wasb:// 与 abfs://(读写、Checkpoint、插件与认证)
flink·flask·azure
Hello.Reader1 天前
Flink 文件系统通用配置默认文件系统与连接数限制实战
vue.js·flink·npm