神经网络(系统性学习三):多层感知机(MLP)

相关文章:

神经网络中常用的激活函数

神经网络(系统性学习一):入门篇

神经网络(系统性学习二):单层神经网络(感知机)


多层感知机(MLP)

多层感知机(MLP)是一种经典的前馈神经网络(Feedforward Neural Network),通常用于解决分类、回归、监督学习任务。它由一个输入层、一个或多个隐藏层和一个输出层组成。

网络结构

  • 输入层:接收数据输入,特征维度等于数据的特征数。

  • 隐藏层:一个或多个隐藏层,每层包含若干个神经元,负责提取数据的特征。

  • 输出层:根据任务(分类或回归)输出最终的结果。

主要参数

  • 权重(Weights):连接各层神经元的参数,决定信号的强弱。

  • 偏置:为每个神经元添加额外的灵活性。

  • 超参数:学习率、隐藏层数、每个隐藏层的神经元数等

特别强调:每个神经元之间的权重和偏置绝大多数时候不相同!!!

核心步骤

++以隐藏层只有一层为例。++

(一)初始化权重和偏置

初始化权重和偏置矩阵。即对每个神经元之间的权重和偏置随机设定一个初始值。

1.1 避免对称性问题

如果所有权重都初始化为相同的值(比如都为0),反向传播计算的梯度对所有权重的更新将是完全相同的。这会导致所有神经元学习到相同的特征,从而失去模型的表达能力。

1.2 权重的初始化

权重的初始化影响网络的输入和输出值的分布。如果初始化值过大,可能导致激活函数的输出进入饱和区(如Sigmoid激活函数趋近于0或1),使得梯度变得极小,网络难以训练(梯度消失问题)。如果初始化值过小,网络学习速度会很慢。

权重可以初始化为均值为0的小随机值。

常见方法包括:

  • 均匀分布:随机生成值在 [−a,a] 区间内。

  • 正态分布:随机生成值符合

1.3 偏置的作用

偏置的初始化相对简单,++通常设为零或一个小的随机值++即可。它的作用是为神经元提供一个额外的自由度,允许模型学习非零输出。

(二)选择损失函数、激活函数

对于分类问题,常用交叉熵损失函数,对于回归问题,常用均方误差损失函数。以MSE损失函数为例,我们假定损失函数为L:

其中, 是预测值, 是真实标签。

激活函数的选择参考文章:常见的激活函数

(三)前向传播

1、从输入层到隐藏层

假设输入层的神经元为 ,隐藏层的神经元为 ​(隐藏层有 k 个神经元)。输入到第 j 个隐藏层神经元 hj 的计算公式如下:

其中:

  • 是第 j 个隐藏层神经元与第 i 个输入神经元之间的权重。

  • xi​ 是输入层第 i 个神经元的输入值。

  • bj​ 是第 j 个隐藏层神经元的偏置。

经过激活函数 ,得到隐藏层神经元的输出:

2、从隐藏层到输出层

隐藏层的输出 ​ 将作为输入传递到输出层的神经元。假设输出层有 m 个神经元,输出层的第 个神经元的计算公式为:

其中:

  • 是第 个输出层神经元与第 i 个隐藏层神经元之间的权重。

  • ​ 是隐藏层第 i 个神经元的输出值。

  • ​ 是第 个输出层神经元的偏置。

同样,经过激活函数(通常是Softmax或Sigmoid)后,得到输出层的输出:

反向传播与权重更新

(四)误差计算与反向传播

训练MLP时,使用反向传播算法来更新网络中的权重和偏置。反向传播算法基于++链式法则++计算损失函数对每个权重和偏置的梯度,然后使用梯度下降法(默认使用全批量梯度下降)来更新参数。

假设损失函数为 L,权重为 w,偏置为 b,则每个权重和偏置的更新规则为:

其中 η 是学习率,​ 是损失函数关于权重和偏置的偏导数。

(五)迭代过程

重复步骤三和步骤四,不断迭代更新权重和偏置。

**终止条件:**达到最大迭代次数、损失收敛、目标性能达标等。

**注:**整个过程只以一个隐藏层为例,如果有多个隐藏层,从隐藏层到隐藏层之间的传递也是类似的。也是以上一层的输出作为该层的输入,并通过激活函数将该层输入转化为该层的输出;其次就是注意每个神经元之间的权重和偏置不一样。

MLP优缺点总结

MLP 是一种通用的神经网络模型,广泛用于分类、回归、特征提取和强化学习等任务。尽管它的能力和表现已经被更复杂的模型(如卷积神经网络 CNN 和循环神经网络 RNN)在某些领域超越,但由于其简单性和强大的非线性拟合能力,MLP仍然是很多基础任务和小型数据集问题中的首选模型。同时,它常常作为其他复杂模型中的子模块,为解决复杂问题提供基础支持。

若对大噶有帮助的话,希望点个赞支持一下叭!

相关推荐
老艾的AI世界8 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
sp_fyf_202411 小时前
【大语言模型】ACL2024论文-19 SportsMetrics: 融合文本和数值数据以理解大型语言模型中的信息融合
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理
CoderIsArt11 小时前
基于 BP 神经网络整定的 PID 控制
人工智能·深度学习·神经网络
EterNity_TiMe_11 小时前
【论文复现】神经网络的公式推导与代码实现
人工智能·python·深度学习·神经网络·数据分析·特征分析
sp_fyf_202413 小时前
【大语言模型】ACL2024论文-18 MINPROMPT:基于图的最小提示数据增强用于少样本问答
人工智能·深度学习·神经网络·目标检测·机器学习·语言模型·自然语言处理
Mr.谢尔比14 小时前
李宏毅机器学习课程知识点摘要(1-5集)
人工智能·pytorch·深度学习·神经网络·算法·机器学习·计算机视觉
曼城周杰伦16 小时前
自然语言处理:第六十二章 KAG 超越GraphRAG的图谱框架
人工智能·pytorch·神经网络·自然语言处理·chatgpt·nlp·gpt-3
南门听露18 小时前
适用于资源受限IoT系统的非对称语义图像压缩技术
深度学习·神经网络·物联网
无脑敲代码,bug漫天飞20 小时前
神经网络的初始化
人工智能·深度学习·神经网络