Python Scikit-learn简介(二)

数据处理

数据划分

机器学习的数据,可以划分为训练集、验证集和测试集,也可以划分为训练集和测试集。

python 复制代码
from sklearn.model_selection import train_test_split

# 示例数据
X = [[1, 2], [3, 4], [5, 6], [7, 8]]
y = [0, 1, 0, 1]

# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

print("Training data:", X_train, y_train)
print("Testing data:", X_test, y_test)
数据清洗

数据清洗是数据预处理的第一步,涉及处理缺失值、重复数据、异常值等。

python 复制代码
import pandas as pd

# 创建一个包含缺失值和重复数据的DataFrame
data = pd.DataFrame({
    'A': [1, 2, np.nan, 4],
    'B': [5, 5, 7, 8],
    'C': [9, 10, 11, 12]
})

# 删除重复行
data = data.drop_duplicates()

# 填充缺失值
data = data.fillna(data.mean())

print(data)
特征提取与转换

特征提取是将原始数据转换为更适合机器学习模型的特征表示。Scikit-learn提供了多种特征提取工具,如DictVectorizer用于处理字典数据,CountVectorizer用于文本数据的词频统计。

python 复制代码
from sklearn.feature_extraction.text import CountVectorizer

# 示例文本数据
text_data = ["hello world", "hello everyone", "world of programming"]

# 初始化CountVectorizer
vectorizer = CountVectorizer()

# 转换文本数据为词频矩阵
X = vectorizer.fit_transform(text_data)

print(X.toarray())
标准化与归一化

标准化和归一化是调整特征尺度的重要步骤,有助于提高某些算法的性能。

python 复制代码
from sklearn.preprocessing import StandardScaler, MinMaxScaler

# 示例数据
data = [[1, 2], [2, 3], [3, 4]]

# 标准化
scaler = StandardScaler()
standardized_data = scaler.fit_transform(data)

# 归一化
min_max_scaler = MinMaxScaler()
normalized_data = min_max_scaler.fit_transform(data)

print("Standardized data:", standardized_data)
print("Normalized data:", normalized_data)
缺失值处理

处理缺失值是数据预处理中的常见任务。Scikit-learn提供了SimpleImputer来填充缺失值。

python 复制代码
from sklearn.impute import SimpleImputer

# 示例数据
data = [[1, 2], [np.nan, 3], [7, 6]]

# 初始化SimpleImputer,使用均值填充
imputer = SimpleImputer(strategy='mean')

# 填充缺失值
imputed_data = imputer.fit_transform(data)

print(imputed_data)
特征选择

监督学习算法


  • 线性模型
    • 线性模型是监督学习中最基础的模型之一,它假设特征之间的关系可以用一条直线(对于二元分类)或超平面(对于多类分类)来表示。线性模型主要包括线性回归(用于连续目标变量)和逻辑回归(用于分类目标变量)
  • 支持向量机
    • 支持向量机(Support Vector Machine, SVM)是一种强大的监督学习算法,适用于分类和回归分析。在分类问题中,SVM旨在找到一个超平面,该超平面能够最大化不同类别之间的边际。
    • Scikit-learn提供了多种SVM实现,包括线性SVM和核SVM。线性SVM适用于线性可分数据,而核SVM通过使用核技巧,可以处理非线性可分数据。
  • 决策树
    • 决策树通过一系列的判断规则对数据进行分类,而随机森林是决策树的集成学习方法,通过构建多个决策树并进行投票来提高预测的准确性。
  • 随机森林
    • 随机森林是决策树的集成学习方法,通过构建多个决策树并进行投票来提高预测的准确性。
  • 集成学习方法
    • 监督学习中的梯度提升机(Gradient Boosting)是一种强大的集成学习算法,它通过迭代地训练决策树来最小化损失函数,从而提高模型的预测性能。Scikit-learn提供了一个名为GradientBoostingClassifier的类,用于实现梯度提升机。

无监督学习算法

  • 聚类分析
    • 聚类分析是将数据集中的样本分成多个组或簇的过程,使得同一簇内的样本相似度高,不同簇间的样本相似度低。K-Means是最常用的聚类算法之一。
  • 主成分分析(PCA)
    • 主成分分析(PCA)是一种用于降维的技术,它通过线性变换将数据投影到新的坐标系中,使得投影后的数据具有最大的方差。
  • 奇异值分解(SVD)
    • 奇异值分解(SVD)是一种矩阵分解技术,常用于降维和数据压缩。
  • 关联规则学习
    • 关联规则学习用于发现数据集中变量之间的有趣关系,如购物篮分析中的"啤酒与尿布"现象。Apriori算法是常用的关联规则学习算法之一。
相关推荐
余~~185381628003 分钟前
稳定的碰一碰发视频、碰一碰矩阵源码技术开发,支持OEM
开发语言·人工智能·python·音视频
0zxm13 分钟前
06 - Django 视图view
网络·后端·python·django
Am心若依旧40938 分钟前
[c++11(二)]Lambda表达式和Function包装器及bind函数
开发语言·c++
明月看潮生41 分钟前
青少年编程与数学 02-004 Go语言Web编程 20课题、单元测试
开发语言·青少年编程·单元测试·编程与数学·goweb
大G哥1 小时前
java提高正则处理效率
java·开发语言
ROBOT玲玉1 小时前
Milvus 中,FieldSchema 的 dim 参数和索引参数中的 “nlist“ 的区别
python·机器学习·numpy
VBA63371 小时前
VBA技术资料MF243:利用第三方软件复制PDF数据到EXCEL
开发语言
轩辰~1 小时前
网络协议入门
linux·服务器·开发语言·网络·arm开发·c++·网络协议
GocNeverGiveUp1 小时前
机器学习2-NumPy
人工智能·机器学习·numpy
小_太_阳1 小时前
Scala_【1】概述
开发语言·后端·scala·intellij-idea