【机器学习】—PCA(主成分分析)

主成分分析(PCA)详解

引言

主成分分析(PCA)是一种统计方法,它可以通过正交变换将一组可能相关的变量转换为一组线性不相关的变量,这些变量称为主成分。PCA经常用于降维,数据压缩,以及在数据挖掘中发现数据结构。

PCA的数学原理

协方差矩阵

假设我们有一个数据集 ( X ),其中包含 ( n ) 个样本,每个样本有 ( p ) 个特征。我们可以将 ( X ) 表示为一个 ( n \times p ) 的矩阵。PCA的第一步是计算协方差矩阵 ( \Sigma ),它是数据集 ( X ) 的特征值和特征向量的载体。

协方差矩阵 ( \Sigma ) 定义为:

\\Sigma = \\frac{1}{n-1} X\^T X

特征值分解

接下来,我们需要对协方差矩阵 ( \Sigma ) 进行特征值分解。特征值分解的目的是找到矩阵的特征值 ( \lambda ) 和对应的特征向量 ( v ),使得:

\\Sigma v = \\lambda v

主成分

特征向量 ( v ) 表示新的特征空间的方向,而特征值 ( \lambda ) 表示每个特征向量的重要性。我们通常按照特征值从大到小的顺序选择前 ( k ) 个特征向量,这些特征向量对应的主成分能够解释数据中最大的方差。

转换数据

最后,我们将原始数据 ( X ) 通过这些特征向量转换到新的特征空间,得到降维后的数据:

X_{reduced} = X V_k

其中 ( V_k ) 是包含前 ( k ) 个特征向量的矩阵。

Python代码实现

以下是使用Python中的sklearn库来实现PCA的一个简单例子。

python 复制代码
import numpy as np
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

# 假设X是包含数据的numpy数组
X = np.array([[1, 2], [3, 4], [5, 6]])

# 标准化数据
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 创建PCA对象,设置主成分的数量
pca = PCA(n_components=2)

# 对数据进行拟合和转换
X_pca = pca.fit_transform(X_scaled)

print("原始数据:\n", X)
print("降维后的数据:\n", X_pca)
相关推荐
飞哥数智坊10 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三10 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯11 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet13 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算13 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心14 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar15 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai15 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI15 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear17 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp