【机器学习】—PCA(主成分分析)

主成分分析(PCA)详解

引言

主成分分析(PCA)是一种统计方法,它可以通过正交变换将一组可能相关的变量转换为一组线性不相关的变量,这些变量称为主成分。PCA经常用于降维,数据压缩,以及在数据挖掘中发现数据结构。

PCA的数学原理

协方差矩阵

假设我们有一个数据集 ( X ),其中包含 ( n ) 个样本,每个样本有 ( p ) 个特征。我们可以将 ( X ) 表示为一个 ( n \times p ) 的矩阵。PCA的第一步是计算协方差矩阵 ( \Sigma ),它是数据集 ( X ) 的特征值和特征向量的载体。

协方差矩阵 ( \Sigma ) 定义为:

[ \Sigma = \frac{1}{n-1} X^T X ]

特征值分解

接下来,我们需要对协方差矩阵 ( \Sigma ) 进行特征值分解。特征值分解的目的是找到矩阵的特征值 ( \lambda ) 和对应的特征向量 ( v ),使得:

[ \Sigma v = \lambda v ]

主成分

特征向量 ( v ) 表示新的特征空间的方向,而特征值 ( \lambda ) 表示每个特征向量的重要性。我们通常按照特征值从大到小的顺序选择前 ( k ) 个特征向量,这些特征向量对应的主成分能够解释数据中最大的方差。

转换数据

最后,我们将原始数据 ( X ) 通过这些特征向量转换到新的特征空间,得到降维后的数据:

[ X_{reduced} = X V_k ]

其中 ( V_k ) 是包含前 ( k ) 个特征向量的矩阵。

Python代码实现

以下是使用Python中的sklearn库来实现PCA的一个简单例子。

python 复制代码
import numpy as np
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

# 假设X是包含数据的numpy数组
X = np.array([[1, 2], [3, 4], [5, 6]])

# 标准化数据
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 创建PCA对象,设置主成分的数量
pca = PCA(n_components=2)

# 对数据进行拟合和转换
X_pca = pca.fit_transform(X_scaled)

print("原始数据:\n", X)
print("降维后的数据:\n", X_pca)
相关推荐
睡觉狂魔er1 小时前
自动驾驶控制与规划——Project 5: Lattice Planner
人工智能·机器学习·自动驾驶
xm一点不soso2 小时前
ROS2+OpenCV综合应用--11. AprilTag标签码跟随
人工智能·opencv·计算机视觉
云卓SKYDROID2 小时前
无人机+Ai应用场景!
人工智能·无人机·科普·高科技·云卓科技
是十一月末2 小时前
机器学习之过采样和下采样调整不均衡样本的逻辑回归模型
人工智能·python·算法·机器学习·逻辑回归
小禾家的3 小时前
.NET AI 开发人员库 --AI Dev Gallery简单示例--问答机器人
人工智能·c#·.net
生信碱移3 小时前
万字长文:机器学习的数学基础(易读)
大数据·人工智能·深度学习·线性代数·算法·数学建模·数据分析
KeyPan3 小时前
【机器学习:四、多输入变量的回归问题】
人工智能·数码相机·算法·机器学习·计算机视觉·数据挖掘·回归
码力全開3 小时前
C 语言奇幻之旅 - 第14篇:C 语言高级主题
服务器·c语言·开发语言·人工智能·算法
人工智能技术咨询.3 小时前
人工智能未来会如何改变人们的生活?
人工智能·深度学习·计算机视觉·语言模型·aigc·生活
MicrosoftReactor3 小时前
技术速递|探索 Microsoft.Extensions.VectorData 与 Qdrant 和 Azure AI 搜索的结合使用
人工智能·microsoft·.net·azure