【机器学习】—PCA(主成分分析)

主成分分析(PCA)详解

引言

主成分分析(PCA)是一种统计方法,它可以通过正交变换将一组可能相关的变量转换为一组线性不相关的变量,这些变量称为主成分。PCA经常用于降维,数据压缩,以及在数据挖掘中发现数据结构。

PCA的数学原理

协方差矩阵

假设我们有一个数据集 ( X ),其中包含 ( n ) 个样本,每个样本有 ( p ) 个特征。我们可以将 ( X ) 表示为一个 ( n \times p ) 的矩阵。PCA的第一步是计算协方差矩阵 ( \Sigma ),它是数据集 ( X ) 的特征值和特征向量的载体。

协方差矩阵 ( \Sigma ) 定义为:

\\Sigma = \\frac{1}{n-1} X\^T X

特征值分解

接下来,我们需要对协方差矩阵 ( \Sigma ) 进行特征值分解。特征值分解的目的是找到矩阵的特征值 ( \lambda ) 和对应的特征向量 ( v ),使得:

\\Sigma v = \\lambda v

主成分

特征向量 ( v ) 表示新的特征空间的方向,而特征值 ( \lambda ) 表示每个特征向量的重要性。我们通常按照特征值从大到小的顺序选择前 ( k ) 个特征向量,这些特征向量对应的主成分能够解释数据中最大的方差。

转换数据

最后,我们将原始数据 ( X ) 通过这些特征向量转换到新的特征空间,得到降维后的数据:

X_{reduced} = X V_k

其中 ( V_k ) 是包含前 ( k ) 个特征向量的矩阵。

Python代码实现

以下是使用Python中的sklearn库来实现PCA的一个简单例子。

python 复制代码
import numpy as np
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

# 假设X是包含数据的numpy数组
X = np.array([[1, 2], [3, 4], [5, 6]])

# 标准化数据
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 创建PCA对象,设置主成分的数量
pca = PCA(n_components=2)

# 对数据进行拟合和转换
X_pca = pca.fit_transform(X_scaled)

print("原始数据:\n", X)
print("降维后的数据:\n", X_pca)
相关推荐
余蓝2 分钟前
本地部署!文生图LCM超简单教程
图像处理·人工智能·深度学习·ai作画·stable diffusion·dall·e 2
千里念行客2404 分钟前
昂瑞微将于12月2日初步询价 助推国产射频芯片自主创新
人工智能·科技·社交电子·api·电子
l***74941 小时前
开源模型应用落地-工具使用篇-Spring AI-Function Call(八)
人工智能·spring·开源
智慧地球(AI·Earth)1 小时前
DeepSeek开源IMO金牌模型:AI数学垄断时代终结
人工智能
选与握2 小时前
深度学习基本知识+tensorflow
人工智能
大千AI助手2 小时前
ROUGE-SU4:文本摘要评估的跳连智慧
人工智能·机器学习·nlp·rouge·文本摘要·大千ai助手·rouge-su4
草莓熊Lotso2 小时前
unordered_map/unordered_set 使用指南:差异、性能与场景选择
java·开发语言·c++·人工智能·经验分享·python·网络协议
stormsha3 小时前
裸眼3D原理浅析AI如何生成平面裸眼3D图像以科幻战士破框而出为例
人工智能·计算机视觉·平面·3d·ai
春日见6 小时前
丝滑快速拓展随机树 S-RRT(Smoothly RRT)算法核心原理与完整流程
人工智能·算法·机器学习·路径规划算法·s-rrt
陈文锦丫8 小时前
MixFormer: A Mixed CNN–Transformer Backbone
人工智能·cnn·transformer