【机器学习】—PCA(主成分分析)

主成分分析(PCA)详解

引言

主成分分析(PCA)是一种统计方法,它可以通过正交变换将一组可能相关的变量转换为一组线性不相关的变量,这些变量称为主成分。PCA经常用于降维,数据压缩,以及在数据挖掘中发现数据结构。

PCA的数学原理

协方差矩阵

假设我们有一个数据集 ( X ),其中包含 ( n ) 个样本,每个样本有 ( p ) 个特征。我们可以将 ( X ) 表示为一个 ( n \times p ) 的矩阵。PCA的第一步是计算协方差矩阵 ( \Sigma ),它是数据集 ( X ) 的特征值和特征向量的载体。

协方差矩阵 ( \Sigma ) 定义为:

\\Sigma = \\frac{1}{n-1} X\^T X

特征值分解

接下来,我们需要对协方差矩阵 ( \Sigma ) 进行特征值分解。特征值分解的目的是找到矩阵的特征值 ( \lambda ) 和对应的特征向量 ( v ),使得:

\\Sigma v = \\lambda v

主成分

特征向量 ( v ) 表示新的特征空间的方向,而特征值 ( \lambda ) 表示每个特征向量的重要性。我们通常按照特征值从大到小的顺序选择前 ( k ) 个特征向量,这些特征向量对应的主成分能够解释数据中最大的方差。

转换数据

最后,我们将原始数据 ( X ) 通过这些特征向量转换到新的特征空间,得到降维后的数据:

X_{reduced} = X V_k

其中 ( V_k ) 是包含前 ( k ) 个特征向量的矩阵。

Python代码实现

以下是使用Python中的sklearn库来实现PCA的一个简单例子。

python 复制代码
import numpy as np
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

# 假设X是包含数据的numpy数组
X = np.array([[1, 2], [3, 4], [5, 6]])

# 标准化数据
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 创建PCA对象,设置主成分的数量
pca = PCA(n_components=2)

# 对数据进行拟合和转换
X_pca = pca.fit_transform(X_scaled)

print("原始数据:\n", X)
print("降维后的数据:\n", X_pca)
相关推荐
还是转转24 分钟前
AI Code Review 工具
人工智能·代码复审
艾莉丝努力练剑25 分钟前
【Git:多人协作】Git多人协作实战:从同分支到多分支工作流
服务器·c++·人工智能·git·gitee·centos·项目管理
拓端研究室3 小时前
专题:2025AI产业全景洞察报告:企业应用、技术突破与市场机遇|附920+份报告PDF、数据、可视化模板汇总下载
大数据·人工智能·pdf
lumi.4 小时前
Vue + Element Plus 实现AI文档解析与问答功能(含详细注释+核心逻辑解析)
前端·javascript·vue.js·人工智能
m0_650108245 小时前
InstructBLIP:面向通用视觉语言模型的指令微调技术解析
论文阅读·人工智能·q-former·指令微调的视觉语言大模型·零样本跨任务泛化·通用视觉语言模型
金融小师妹6 小时前
基于NLP语义解析的联储政策信号:强化学习框架下的12月降息概率回升动态建模
大数据·人工智能·深度学习·1024程序员节
AKAMAI7 小时前
提升 EdgeWorker 可观测性:使用 DataStream 设置日志功能
人工智能·云计算
银空飞羽8 小时前
让Trae CN SOLO自主发挥,看看能做出一个什么样的项目
前端·人工智能·trae
cg50178 小时前
基于 Bert 基本模型进行 Fine-tuned
人工智能·深度学习·bert
Dev7z8 小时前
基于Matlab图像处理的EAN条码自动识别系统设计与实现
图像处理·人工智能