预测未来 | MATLAB实现Transformer时间序列预测未来

预测未来 | MATLAB实现Transformer时间序列预测未来

预测效果




基本介绍

1.Matlab实现Transformer时间序列预测未来;

2.运行环境Matlab2023b及以上,data为数据集,单变量时间序列预测;

3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;

4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标;

5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

6.适用对象:大学生课程设计、期末大作业和毕业设计。

程序设计

  • 代码获取私信回复MATLAB实现Transformer时间序列预测未来
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
result = xlsread('data.xlsx');



%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/126805601?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/126805183?spm=1001.2014.3001.5501 \[3\] https://blog.csdn.net/kjm13182345320/article/details/126775607?spm=1001.2014.3001.5501 \[4\] https://blog.csdn.net/kjm13182345320/article/details/126738853?spm=1001.2014.3001.5501

相关推荐
项目申报小狂人13 分钟前
算法应用上新!自适应更新策略差分进化算法求解球形多飞行器路径规划问题,附完整MATLAB代码
开发语言·算法·matlab
躺平都躺不明白15 分钟前
数学建模-评价类问题-优劣解距离法(TOPSIS)
数学建模·matlab
Coovally AI模型快速验证15 小时前
YOLO、DarkNet和深度学习如何让自动驾驶看得清?
深度学习·算法·yolo·cnn·自动驾驶·transformer·无人机
盼小辉丶1 天前
Transformer实战(4)——从零开始构建Transformer
pytorch·深度学习·transformer
Struart_R2 天前
SpatialVLM和SpatialRGPT论文解读
计算机视觉·语言模型·transformer·大语言模型·vlm·视觉理解·空间推理
果粒橙_LGC2 天前
自学大语言模型之Transformer的Tokenizer
人工智能·语言模型·transformer
盼小辉丶2 天前
Transformer实战(11)——从零开始构建GPT模型
gpt·深度学习·transformer
计算机sci论文精选2 天前
CVPR2025敲门砖丨机器人结合多模态+时空Transformer直冲高分,让你的论文不再灌水
人工智能·科技·深度学习·机器人·transformer·cvpr
壹Y.2 天前
MATLAB 绘图速查笔记
笔记·matlab
Evand J3 天前
【MATLAB例程】滑动窗口均值滤波、中值滤波、最小值/最大值滤波对比。附代码下载链接
开发语言·matlab·均值算法