BERT的工作原理

BERT的工作原理

BERT的工作原理:

Transformer的编码器是双向的,它可以从两个方向读取一个句子。因此,BERT由Transformer获得双向编码器特征。

我们把句子A(He got bit by Python)送入Transformer的编码器,得到句子中每个单词的上下文特征(嵌入)。一旦我们将句子送入编码器,编码器就会利用多头注意力层来理解每个单词在句中的上下文(将句子中的每个单词与句子中的所有单词联系起来,以学习单词之

间的关系和语境含义),并将其特征值作为输出。

如下图所示,我们将句子送入Transformer的编码器,得到句子中每个单词的特征值。图中的N表示可以有N个编码器。 R H e R_{He} RHe表示单词He的特征, R g o t R_{got} Rgot表示单词got的特征,以此类推。每个单词的特征向量大小是编码器层的大小。假设编码器层的大小为768,那么每个单词的特征向量大小也是768。为了避免重复,只有编码器1被展开说明。

同样,如果我们将句子B(Python is my favorite programming language)送入Transformer的编码器,那么会得到句子中每个单词的上下文特征,如下图所示。

可见,通过BERT模型,对于一个给定的句子,我们可以获得每个单词的上下文特征(嵌入)。现在,我们已经了解了BERT是如何生成上下文特征的。

相关推荐
weixin_5498083624 分钟前
如何使用易路iBuilder智能体平台快速安全深入实现AI HR【实用帖】
人工智能·安全
EasyDSS1 小时前
WebRTC技术下的EasyRTC音视频实时通话SDK,助力车载通信打造安全高效的智能出行体验
人工智能·音视频
jndingxin1 小时前
OpenCV CUDA模块中逐元素操作------数学函数
人工智能·opencv·计算机视觉
暴龙胡乱写博客1 小时前
机器学习 --- KNN算法
人工智能·算法·机器学习
极新2 小时前
极新携手火山引擎,共探AI时代生态共建的破局点与增长引擎
人工智能·火山引擎
是麟渊2 小时前
【大模型面试每日一题】Day 17:解释MoE(Mixture of Experts)架构如何实现模型稀疏性,并分析其训练难点
人工智能·自然语言处理·面试·职场和发展·架构
Poseidon、2 小时前
2025年5月AI科技领域周报(5.5-5.11):AGI研究进入关键验证期 具身智能开启物理世界交互新范式
人工智能·agi
天机️灵韵3 小时前
字节开源FlowGram与n8n 技术选型
人工智能·python·开源项目
jixunwulian3 小时前
AI边缘网关_5G/4G边缘计算网关厂家_计讯物联
人工智能·5g·边缘计算
boooo_hhh3 小时前
第28周——InceptionV1实现猴痘识别
python·深度学习·机器学习