BERT的工作原理

BERT的工作原理

BERT的工作原理:

Transformer的编码器是双向的,它可以从两个方向读取一个句子。因此,BERT由Transformer获得双向编码器特征。

我们把句子A(He got bit by Python)送入Transformer的编码器,得到句子中每个单词的上下文特征(嵌入)。一旦我们将句子送入编码器,编码器就会利用多头注意力层来理解每个单词在句中的上下文(将句子中的每个单词与句子中的所有单词联系起来,以学习单词之

间的关系和语境含义),并将其特征值作为输出。

如下图所示,我们将句子送入Transformer的编码器,得到句子中每个单词的特征值。图中的N表示可以有N个编码器。 R H e R_{He} RHe表示单词He的特征, R g o t R_{got} Rgot表示单词got的特征,以此类推。每个单词的特征向量大小是编码器层的大小。假设编码器层的大小为768,那么每个单词的特征向量大小也是768。为了避免重复,只有编码器1被展开说明。

同样,如果我们将句子B(Python is my favorite programming language)送入Transformer的编码器,那么会得到句子中每个单词的上下文特征,如下图所示。

可见,通过BERT模型,对于一个给定的句子,我们可以获得每个单词的上下文特征(嵌入)。现在,我们已经了解了BERT是如何生成上下文特征的。

相关推荐
jay神11 分钟前
基于YOLOv8的木材表面缺陷检测系统
人工智能·深度学习·yolo·计算机视觉·毕业设计
交通上的硅基思维18 分钟前
人工智能安全:风险、机制与治理框架研究
人工智能·安全·百度
老百姓懂点AI21 分钟前
[测试工程] 告别“玄学”评测:智能体来了(西南总部)基于AI agent指挥官的自动化Eval框架与AI调度官的回归测试
运维·人工智能·自动化
2501_9481201525 分钟前
基于量化感知训练的大语言模型压缩方法
人工智能·语言模型·自然语言处理
songyuc28 分钟前
【Llava】load_pretrained_model() 说明
人工智能·深度学习
MARS_AI_29 分钟前
大模型赋能客户沟通,云蝠大模型呼叫实现问题解决全链路闭环
人工智能·自然语言处理·信息与通信·agi
名为沙丁鱼的猫7291 小时前
【MCP 协议层(Protocol layer)详解】:深入分析MCP Python SDK中协议层的实现机制
人工智能·深度学习·神经网络·机器学习·自然语言处理·nlp
bylander1 小时前
【AI学习】几分钟了解一下Clawdbot
人工智能·智能体·智能体应用
香芋Yu1 小时前
【机器学习教程】第04章 指数族分布
人工智能·笔记·机器学习
小咖自动剪辑1 小时前
Base64与图片互转工具增强版:一键编码/解码,支持多格式
人工智能·pdf·word·媒体