BERT的工作原理

BERT的工作原理

BERT的工作原理:

Transformer的编码器是双向的,它可以从两个方向读取一个句子。因此,BERT由Transformer获得双向编码器特征。

我们把句子A(He got bit by Python)送入Transformer的编码器,得到句子中每个单词的上下文特征(嵌入)。一旦我们将句子送入编码器,编码器就会利用多头注意力层来理解每个单词在句中的上下文(将句子中的每个单词与句子中的所有单词联系起来,以学习单词之

间的关系和语境含义),并将其特征值作为输出。

如下图所示,我们将句子送入Transformer的编码器,得到句子中每个单词的特征值。图中的N表示可以有N个编码器。 R H e R_{He} RHe表示单词He的特征, R g o t R_{got} Rgot表示单词got的特征,以此类推。每个单词的特征向量大小是编码器层的大小。假设编码器层的大小为768,那么每个单词的特征向量大小也是768。为了避免重复,只有编码器1被展开说明。

同样,如果我们将句子B(Python is my favorite programming language)送入Transformer的编码器,那么会得到句子中每个单词的上下文特征,如下图所示。

可见,通过BERT模型,对于一个给定的句子,我们可以获得每个单词的上下文特征(嵌入)。现在,我们已经了解了BERT是如何生成上下文特征的。

相关推荐
一切皆有可能!!2 小时前
实践篇:利用ragas在自己RAG上实现LLM评估②
人工智能·语言模型
月白风清江有声3 小时前
爆炸仿真的学习日志
人工智能
华奥系科技4 小时前
智慧水务发展迅猛:从物联网架构到AIoT系统的跨越式升级
人工智能·物联网·智慧城市
R²AIN SUITE4 小时前
MCP协议重构AI Agent生态:万能插槽如何终结工具孤岛?
人工智能
b***25115 小时前
动力电池点焊机:驱动电池焊接高效与可靠的核心力量|比斯特自动化
人工智能·科技·自动化
Gyoku Mint5 小时前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
小和尚同志5 小时前
通俗易懂的 MCP 概念入门
人工智能·aigc
dudly5 小时前
大语言模型评测体系全解析(下篇):工具链、学术前沿与实战策略
人工智能·语言模型
zzlyx995 小时前
AI大数据模型如何与thingsboard物联网结合
人工智能·物联网
说私域6 小时前
定制开发开源AI智能名片驱动下的海报工厂S2B2C商城小程序运营策略——基于社群口碑传播与子市场细分的实证研究
人工智能·小程序·开源·零售