基于Matlab的图像去噪算法仿真

    1. 中值滤波的仿真

本节选用中值滤波法对含有高斯噪声和椒盐噪声的图像进行去噪,并用Matlab软件仿真。

(1)给图像加入均值为0,方差为0.02的高斯噪声,分别选择3×3模板、5×5模板和7×7模板进行去噪

Matlab部分代码:

j=imnoise(I,'gaussian',0,0.02);

x=j(:,:,1);

subplot(221);

imshow(x);

title('高斯噪声图片');

k1=medfilt2(x,[3 3]);

k2=medfilt2(x,[5 5]);

k3=medfilt2(x,[7 7]);

仿真结果如图1-3所示。

图1-3 中值滤波法对高斯噪声去噪的仿真结果

(2)给图像加入噪声密度为0.02的椒盐噪声,分别选择3×3模板、5×5模板和7×7模板进行去噪

Matlab部分代码:

i=imread('2010-03-09-2.bmp');

j=imnoise(I,'salt & pepper',0.02);

x=j(:,:,1);

subplot(221);

imshow(x);

title('椒盐噪声图片');

k1=medfilt2(x,[3 3]);

k2=medfilt2(x,[5 5]);

k3=medfilt2(x,[7 7]);

仿真结果如图1-4所示。

从仿真结果可以看出:对图像加入椒盐噪声后,应用中值滤波,如图1-4所示,噪声的斑点几乎全部被滤去,它对滤除图像的椒盐噪声非常有效。而对于高斯噪声来说,如图1-3所示,虽然也有一些去噪效果,但效果不佳。由此可知,中值滤波法运算简单,易于实现,而且能较好地保护边界,但有时会失掉图像中的细线和小块区域。并且采用窗口的大小对滤波效果影响很大,窗口越大,图像去噪效果越好,但代价是模糊的程度越大。

    1. 维纳滤波的仿真

选用维纳滤波法对含有高斯噪声和椒盐噪声的图像进行去噪,并用Matlab软件仿真。

(1)给图像加入均值为0,方差为0.02的高斯噪声,选择3×3模板去噪

Matlab部分代码:

i=imread('2010-03-09-2.bmp');

j=imnoise(I,'gaussian',0,0.02);

x=j(:,:,1);

k=wiener2(x);

仿真结果如图1-5所示。

图1-5 维纳滤波法对高斯噪声去噪的仿真结果

(2)给图像加入噪声密度为0.02的椒盐噪声,选择3×3模板去噪

Matlab部分代码:

j=imnoise(I,'salt & pepper',0.02);

x=j(:,:,1);

k=wiener2(x);

仿真结果如图1-6所示。

从仿真结果可以看出:维纳滤波对高斯白噪声的图像滤波与邻域平均法比较, 滤波效果好,它比线性滤波器具有更好的选择性,可以更好地保存图像的边缘和高频细节信息。虽然,维纳滤波在大多数情况下都可以获得满意的结果,尤其对含有高斯噪声的图像。另外维纳滤波对于椒盐噪声去除效果却不尽人意,几乎没有效果。它不能用于噪声为非平稳的随机过程的情况,对于向量情况应用不方便。因此,维纳滤波在实际问题中应用不多。

相关推荐
涤生84324 分钟前
图像处理中的投影变换(单应性变换)
图像处理·人工智能·计算机视觉
kaikaile19951 小时前
基于 MATLAB 的室内三维定位
算法
AGI前沿1 小时前
AdamW的继任者?AdamHD让LLM训练提速15%,性能提升4.7%,显存再省30%
人工智能·算法·语言模型·aigc
Tan_Ying_Y1 小时前
什么是垃圾回收算法 他的底层原理是什么?
算法
Xの哲學1 小时前
Linux 分区表深度技术剖析
linux·网络·算法·架构·边缘计算
写写闲篇儿1 小时前
经典算法题剖析之传递信息(三)
算法
上不如老下不如小1 小时前
2025年第七届全国高校计算机能力挑战赛初赛 Python组 编程题汇总
开发语言·python·算法
小年糕是糕手2 小时前
【C++】类和对象(二) -- 构造函数、析构函数
java·c语言·开发语言·数据结构·c++·算法·leetcode
机器学习之心2 小时前
SSA-SVMD麻雀算法优化逐次变分模态分解(15种不同的适应度)MATLAB代码
matlab·ssa-svmd·麻雀算法优化逐次变分模态分解
kupeThinkPoem2 小时前
跳表有哪些算法?
数据结构·算法