基于Matlab的图像去噪算法仿真

    1. 中值滤波的仿真

本节选用中值滤波法对含有高斯噪声和椒盐噪声的图像进行去噪,并用Matlab软件仿真。

(1)给图像加入均值为0,方差为0.02的高斯噪声,分别选择3×3模板、5×5模板和7×7模板进行去噪

Matlab部分代码:

j=imnoise(I,'gaussian',0,0.02);

x=j(:,:,1);

subplot(221);

imshow(x);

title('高斯噪声图片');

k1=medfilt2(x,[3 3]);

k2=medfilt2(x,[5 5]);

k3=medfilt2(x,[7 7]);

仿真结果如图1-3所示。

图1-3 中值滤波法对高斯噪声去噪的仿真结果

(2)给图像加入噪声密度为0.02的椒盐噪声,分别选择3×3模板、5×5模板和7×7模板进行去噪

Matlab部分代码:

i=imread('2010-03-09-2.bmp');

j=imnoise(I,'salt & pepper',0.02);

x=j(:,:,1);

subplot(221);

imshow(x);

title('椒盐噪声图片');

k1=medfilt2(x,[3 3]);

k2=medfilt2(x,[5 5]);

k3=medfilt2(x,[7 7]);

仿真结果如图1-4所示。

从仿真结果可以看出:对图像加入椒盐噪声后,应用中值滤波,如图1-4所示,噪声的斑点几乎全部被滤去,它对滤除图像的椒盐噪声非常有效。而对于高斯噪声来说,如图1-3所示,虽然也有一些去噪效果,但效果不佳。由此可知,中值滤波法运算简单,易于实现,而且能较好地保护边界,但有时会失掉图像中的细线和小块区域。并且采用窗口的大小对滤波效果影响很大,窗口越大,图像去噪效果越好,但代价是模糊的程度越大。

    1. 维纳滤波的仿真

选用维纳滤波法对含有高斯噪声和椒盐噪声的图像进行去噪,并用Matlab软件仿真。

(1)给图像加入均值为0,方差为0.02的高斯噪声,选择3×3模板去噪

Matlab部分代码:

i=imread('2010-03-09-2.bmp');

j=imnoise(I,'gaussian',0,0.02);

x=j(:,:,1);

k=wiener2(x);

仿真结果如图1-5所示。

图1-5 维纳滤波法对高斯噪声去噪的仿真结果

(2)给图像加入噪声密度为0.02的椒盐噪声,选择3×3模板去噪

Matlab部分代码:

j=imnoise(I,'salt & pepper',0.02);

x=j(:,:,1);

k=wiener2(x);

仿真结果如图1-6所示。

从仿真结果可以看出:维纳滤波对高斯白噪声的图像滤波与邻域平均法比较, 滤波效果好,它比线性滤波器具有更好的选择性,可以更好地保存图像的边缘和高频细节信息。虽然,维纳滤波在大多数情况下都可以获得满意的结果,尤其对含有高斯噪声的图像。另外维纳滤波对于椒盐噪声去除效果却不尽人意,几乎没有效果。它不能用于噪声为非平稳的随机过程的情况,对于向量情况应用不方便。因此,维纳滤波在实际问题中应用不多。

相关推荐
Jayden_Ruan43 分钟前
C++逆向输出一个字符串(三)
开发语言·c++·算法
点云SLAM2 小时前
C++ 常见面试题汇总
java·开发语言·c++·算法·面试·内存管理
叙白冲冲2 小时前
哈希算法以及面试答法
算法·面试·哈希算法
YuTaoShao3 小时前
【LeetCode 每日一题】1277. 统计全为 1 的正方形子矩阵
算法·leetcode·矩阵
古译汉书3 小时前
嵌入式铁头山羊stm32-ADC实现定时器触发的注入序列的单通道转换-Day26
开发语言·数据结构·stm32·单片机·嵌入式硬件·算法
野犬寒鸦3 小时前
力扣hot100:相交链表与反转链表详细思路讲解(160,206)
java·数据结构·后端·算法·leetcode
阿昭L3 小时前
leetcode两数之和
算法·leetcode
周树皮不皮3 小时前
【Leetcode100】算法模板之二叉树
算法
无名客03 小时前
sentinel限流常见的几种算法以及优缺点
算法·sentinel·限流
Moonbit4 小时前
月报Vol.03: 新增Bitstring pattern支持,构造器模式匹配增强
后端·算法·github