基于Matlab的图像去噪算法仿真

    1. 中值滤波的仿真

本节选用中值滤波法对含有高斯噪声和椒盐噪声的图像进行去噪,并用Matlab软件仿真。

(1)给图像加入均值为0,方差为0.02的高斯噪声,分别选择3×3模板、5×5模板和7×7模板进行去噪

Matlab部分代码:

j=imnoise(I,'gaussian',0,0.02);

x=j(:,:,1);

subplot(221);

imshow(x);

title('高斯噪声图片');

k1=medfilt2(x,[3 3]);

k2=medfilt2(x,[5 5]);

k3=medfilt2(x,[7 7]);

仿真结果如图1-3所示。

图1-3 中值滤波法对高斯噪声去噪的仿真结果

(2)给图像加入噪声密度为0.02的椒盐噪声,分别选择3×3模板、5×5模板和7×7模板进行去噪

Matlab部分代码:

i=imread('2010-03-09-2.bmp');

j=imnoise(I,'salt & pepper',0.02);

x=j(:,:,1);

subplot(221);

imshow(x);

title('椒盐噪声图片');

k1=medfilt2(x,[3 3]);

k2=medfilt2(x,[5 5]);

k3=medfilt2(x,[7 7]);

仿真结果如图1-4所示。

从仿真结果可以看出:对图像加入椒盐噪声后,应用中值滤波,如图1-4所示,噪声的斑点几乎全部被滤去,它对滤除图像的椒盐噪声非常有效。而对于高斯噪声来说,如图1-3所示,虽然也有一些去噪效果,但效果不佳。由此可知,中值滤波法运算简单,易于实现,而且能较好地保护边界,但有时会失掉图像中的细线和小块区域。并且采用窗口的大小对滤波效果影响很大,窗口越大,图像去噪效果越好,但代价是模糊的程度越大。

    1. 维纳滤波的仿真

选用维纳滤波法对含有高斯噪声和椒盐噪声的图像进行去噪,并用Matlab软件仿真。

(1)给图像加入均值为0,方差为0.02的高斯噪声,选择3×3模板去噪

Matlab部分代码:

i=imread('2010-03-09-2.bmp');

j=imnoise(I,'gaussian',0,0.02);

x=j(:,:,1);

k=wiener2(x);

仿真结果如图1-5所示。

图1-5 维纳滤波法对高斯噪声去噪的仿真结果

(2)给图像加入噪声密度为0.02的椒盐噪声,选择3×3模板去噪

Matlab部分代码:

j=imnoise(I,'salt & pepper',0.02);

x=j(:,:,1);

k=wiener2(x);

仿真结果如图1-6所示。

从仿真结果可以看出:维纳滤波对高斯白噪声的图像滤波与邻域平均法比较, 滤波效果好,它比线性滤波器具有更好的选择性,可以更好地保存图像的边缘和高频细节信息。虽然,维纳滤波在大多数情况下都可以获得满意的结果,尤其对含有高斯噪声的图像。另外维纳滤波对于椒盐噪声去除效果却不尽人意,几乎没有效果。它不能用于噪声为非平稳的随机过程的情况,对于向量情况应用不方便。因此,维纳滤波在实际问题中应用不多。

相关推荐
王老师青少年编程3 小时前
gesp(C++五级)(14)洛谷:B4071:[GESP202412 五级] 武器强化
开发语言·c++·算法·gesp·csp·信奥赛
DogDaoDao3 小时前
leetcode 面试经典 150 题:有效的括号
c++·算法·leetcode·面试··stack·有效的括号
Coovally AI模型快速验证4 小时前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
可为测控5 小时前
图像处理基础(4):高斯滤波器详解
人工智能·算法·计算机视觉
Milk夜雨5 小时前
头歌实训作业 算法设计与分析-贪心算法(第3关:活动安排问题)
算法·贪心算法
BoBoo文睡不醒5 小时前
动态规划(DP)(细致讲解+例题分析)
算法·动态规划
apz_end6 小时前
埃氏算法C++实现: 快速输出质数( 素数 )
开发语言·c++·算法·埃氏算法
硬汉嵌入式6 小时前
《安富莱嵌入式周报》第349期:VSCode正式支持Matlab调试,DIY录音室级麦克风,开源流体吊坠,物联网在军工领域的应用,Unicode字符压缩解压
vscode·matlab·开源
仟濹6 小时前
【贪心算法】洛谷P1106 - 删数问题
c语言·c++·算法·贪心算法
CM莫问7 小时前
python实战(十五)——中文手写体数字图像CNN分类
人工智能·python·深度学习·算法·cnn·图像分类·手写体识别