基于Matlab的图像去噪算法仿真

    1. 中值滤波的仿真

本节选用中值滤波法对含有高斯噪声和椒盐噪声的图像进行去噪,并用Matlab软件仿真。

(1)给图像加入均值为0,方差为0.02的高斯噪声,分别选择3×3模板、5×5模板和7×7模板进行去噪

Matlab部分代码:

j=imnoise(I,'gaussian',0,0.02);

x=j(:,:,1);

subplot(221);

imshow(x);

title('高斯噪声图片');

k1=medfilt2(x,[3 3]);

k2=medfilt2(x,[5 5]);

k3=medfilt2(x,[7 7]);

仿真结果如图1-3所示。

图1-3 中值滤波法对高斯噪声去噪的仿真结果

(2)给图像加入噪声密度为0.02的椒盐噪声,分别选择3×3模板、5×5模板和7×7模板进行去噪

Matlab部分代码:

i=imread('2010-03-09-2.bmp');

j=imnoise(I,'salt & pepper',0.02);

x=j(:,:,1);

subplot(221);

imshow(x);

title('椒盐噪声图片');

k1=medfilt2(x,[3 3]);

k2=medfilt2(x,[5 5]);

k3=medfilt2(x,[7 7]);

仿真结果如图1-4所示。

从仿真结果可以看出:对图像加入椒盐噪声后,应用中值滤波,如图1-4所示,噪声的斑点几乎全部被滤去,它对滤除图像的椒盐噪声非常有效。而对于高斯噪声来说,如图1-3所示,虽然也有一些去噪效果,但效果不佳。由此可知,中值滤波法运算简单,易于实现,而且能较好地保护边界,但有时会失掉图像中的细线和小块区域。并且采用窗口的大小对滤波效果影响很大,窗口越大,图像去噪效果越好,但代价是模糊的程度越大。

    1. 维纳滤波的仿真

选用维纳滤波法对含有高斯噪声和椒盐噪声的图像进行去噪,并用Matlab软件仿真。

(1)给图像加入均值为0,方差为0.02的高斯噪声,选择3×3模板去噪

Matlab部分代码:

i=imread('2010-03-09-2.bmp');

j=imnoise(I,'gaussian',0,0.02);

x=j(:,:,1);

k=wiener2(x);

仿真结果如图1-5所示。

图1-5 维纳滤波法对高斯噪声去噪的仿真结果

(2)给图像加入噪声密度为0.02的椒盐噪声,选择3×3模板去噪

Matlab部分代码:

j=imnoise(I,'salt & pepper',0.02);

x=j(:,:,1);

k=wiener2(x);

仿真结果如图1-6所示。

从仿真结果可以看出:维纳滤波对高斯白噪声的图像滤波与邻域平均法比较, 滤波效果好,它比线性滤波器具有更好的选择性,可以更好地保存图像的边缘和高频细节信息。虽然,维纳滤波在大多数情况下都可以获得满意的结果,尤其对含有高斯噪声的图像。另外维纳滤波对于椒盐噪声去除效果却不尽人意,几乎没有效果。它不能用于噪声为非平稳的随机过程的情况,对于向量情况应用不方便。因此,维纳滤波在实际问题中应用不多。

相关推荐
闻缺陷则喜何志丹32 分钟前
【贪心 字典序 回文 最长公共前缀】LeetCode3734. 大于目标字符串的最小字典序回文排列|分数未知
c++·算法·力扣·贪心·字典序·回文·最长公共前缀
weixin_514221851 小时前
FDTD代码学习-1
学习·算法·lumerical·fdtd
AI柠檬2 小时前
机器学习:数据集的划分
人工智能·算法·机器学习
搞科研的小刘选手2 小时前
【多所高校合作】第四届图像处理、计算机视觉与机器学习国际学术会议(ICICML 2025)
图像处理·人工智能·机器学习·计算机视觉·数据挖掘·人脸识别·人机交互
让我们一起加油好吗2 小时前
【数论】裴蜀定理与扩展欧几里得算法 (exgcd)
算法·数论·裴蜀定理·扩展欧几里得算法·逆元
Geo_V2 小时前
提示词工程
人工智能·python·算法·ai
侯小啾2 小时前
【22】C语言 - 二维数组详解
c语言·数据结构·算法
TL滕3 小时前
从0开始学算法——第一天(如何高效学习算法)
数据结构·笔记·学习·算法
傻童:CPU3 小时前
DFS迷宫问题
算法·深度优先
B站_计算机毕业设计之家3 小时前
计算机视觉:python车辆行人检测与跟踪系统 YOLO模型 SORT算法 PyQt5界面 目标检测+目标跟踪 深度学习 计算机✅
人工智能·python·深度学习·算法·yolo·目标检测·机器学习