深度学习——多层感知机的从零开始实现和简洁实现

目录

一、多层感知机的从零开始实现

python 复制代码
import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

1.1初始化模型参数

Fashion-MNIST中的每个图像由 28 × 28 = 784 28 \times 28=784 28×28=784个灰度像素值组成。所有图像共分为10个类别。 忽略像素之间的空间结构, 我们可以将每个图像视为具有784个输入特征 和10个类的简单分类数据集。

首先,我们将实现一个具有单隐藏层的多层感知机, 它包含256个隐藏单元。 我们用几个张量来表示我们的参数。 注意,对于每一层我们都要记录一个权重矩阵和一个偏置向量。 跟以前一样,我们要为损失关于这些参数的梯度分配内存。

python 复制代码
num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = nn.Parameter(torch.randn(
    num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(
    num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))

params = [W1, b1, W2, b2]

torch.randn生成随机数并乘以0.01进行初始化。

1.2 激活函数

手动实现ReLU激活函数

python 复制代码
def relu(X):
    a = torch.zeros_like(X)
    return torch.max(X, a)

1.3 网络模型

使用reshape将每个二维图像转换为一个长度为num_inputs的向量。

python 复制代码
def net(X):
    X = X.reshape((-1, num_inputs))
    H = relu(X@W1 + b1)  # 这里"@"代表矩阵乘法
    return (H@W2 + b2)

1.4 损失函数

直接使用高级API中的内置函数来计算softmax和交叉熵损失。

python 复制代码
loss = nn.CrossEntropyLoss(reduction='none')

1.5 训练

可以直接调用d2l包的train_ch3函数, 将迭代周期数设置为10,并将学习率设置为0.1.

python 复制代码
num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)

为了对学习到的模型进行评估,我们将在一些测试数据上应用这个模型。

python 复制代码
d2l.predict_ch3(net, test_iter)

因为d2l下载的包版本原因,直接运行可能会报错,因此,我上传了完整代码的ipynb文件,可以直接运行。

二、多层感知机的简洁实现

python 复制代码
import torch
from torch import nn
from d2l import torch as d2l

2.1 网络模型

与softmax回归的简洁实现相比, 唯一的区别是我们添加了2个全连接层(之前我们只添加了1个全连接层)。 第一层是隐藏层,它包含256个隐藏单元,并使用了ReLU激活函数。 第二层是输出层。

python 复制代码
net = nn.Sequential(nn.Flatten(),
                    nn.Linear(784, 256),
                    nn.ReLU(),
                    nn.Linear(256, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);

训练过程的实现与实现softmax回归时完全相同。

python 复制代码
batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=lr)

train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

同理,这里可以参考源文件中的完整代码。
  对于相同的分类问题,多层感知机的实现与softmax回归的实现相同,只是多层感知机的实现里增加了带有激活函数的隐藏层。

相关推荐
Yeats_Liao3 小时前
评估体系构建:基于自动化指标与人工打分的双重验证
运维·人工智能·深度学习·算法·机器学习·自动化
深圳市恒星物联科技有限公司3 小时前
水质流量监测仪:复合指标监测的管网智能感知设备
大数据·网络·人工智能
断眉的派大星3 小时前
均值为0,方差为1:数据的“标准校服”
人工智能·机器学习·均值算法
A尘埃4 小时前
电子厂PCB板焊点缺陷检测(卷积神经网络CNN)
人工智能·神经网络·cnn
Tadas-Gao4 小时前
缸中之脑:大模型架构的智能幻象与演进困局
人工智能·深度学习·机器学习·架构·大模型·llm
中金快讯4 小时前
新视野混合净值波动有几何?贝莱德基金回撤控制策略是否命中关键?
人工智能
楚兴4 小时前
MacBook M1 安装 OpenClaw 完整指南
人工智能·后端
23遇见4 小时前
探索CANN:开源AI计算底座的关键组件与技术思想
人工智能
jl48638214 小时前
变比测试仪显示屏的“标杆“配置!如何兼顾30000小时寿命与六角矢量图精准显示?
人工智能·经验分享·嵌入式硬件·物联网·人机交互
2301_818730564 小时前
transformer(上)
人工智能·深度学习·transformer