YOLOv8模型pytorch格式转为onnx格式

一、YOLOv8的Pytorch网络结构

python 复制代码
model DetectionModel(
  (model): Sequential(
    (0): Conv(
      (conv): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
      (act): SiLU(inplace=True)
    )
    (1): Conv(
      (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
      (act): SiLU(inplace=True)
    )
    (2): C2f(
      (cv1): Conv(
        (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
        (act): SiLU(inplace=True)
      )
      (cv2): Conv(
        (conv): Conv2d(320, 128, kernel_size=(1, 1), stride=(1, 1))
        (act): SiLU(inplace=True)
      )
      (m): ModuleList(
        (0-2): 3 x Bottleneck(
          (cv1): Conv(
            (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
          (cv2): Conv(
            (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
        )
      )
    )
    (3): Conv(
      (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
      (act): SiLU(inplace=True)
    )
    (4): C2f(
      (cv1): Conv(
        (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
        (act): SiLU(inplace=True)
      )
      (cv2): Conv(
        (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
        (act): SiLU(inplace=True)
      )
      (m): ModuleList(
        (0-5): 6 x Bottleneck(
          (cv1): Conv(
            (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
          (cv2): Conv(
            (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
        )
      )
    )
    (5): Conv(
      (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
      (act): SiLU(inplace=True)
    )
    (6): C2f(
      (cv1): Conv(
        (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1))
        (act): SiLU(inplace=True)
      )
      (cv2): Conv(
        (conv): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
        (act): SiLU(inplace=True)
      )
      (m): ModuleList(
        (0-5): 6 x Bottleneck(
          (cv1): Conv(
            (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
          (cv2): Conv(
            (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
        )
      )
    )
    (7): Conv(
      (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
      (act): SiLU(inplace=True)
    )
    (8): C2f(
      (cv1): Conv(
        (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1))
        (act): SiLU(inplace=True)
      )
      (cv2): Conv(
        (conv): Conv2d(1280, 512, kernel_size=(1, 1), stride=(1, 1))
        (act): SiLU(inplace=True)
      )
      (m): ModuleList(
        (0-2): 3 x Bottleneck(
          (cv1): Conv(
            (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
          (cv2): Conv(
            (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
        )
      )
    )
    (9): SPPF(
      (cv1): Conv(
        (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
        (act): SiLU(inplace=True)
      )
      (cv2): Conv(
        (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1))
        (act): SiLU(inplace=True)
      )
      (m): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)
    )
    (10): Upsample(scale_factor=2.0, mode='nearest')
    (11): Concat()
    (12): C2f(
      (cv1): Conv(
        (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1))
        (act): SiLU(inplace=True)
      )
      (cv2): Conv(
        (conv): Conv2d(1280, 512, kernel_size=(1, 1), stride=(1, 1))
        (act): SiLU(inplace=True)
      )
      (m): ModuleList(
        (0-2): 3 x Bottleneck(
          (cv1): Conv(
            (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
          (cv2): Conv(
            (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
        )
      )
    )
    (13): Upsample(scale_factor=2.0, mode='nearest')
    (14): Concat()
    (15): C2f(
      (cv1): Conv(
        (conv): Conv2d(768, 256, kernel_size=(1, 1), stride=(1, 1))
        (act): SiLU(inplace=True)
      )
      (cv2): Conv(
        (conv): Conv2d(640, 256, kernel_size=(1, 1), stride=(1, 1))
        (act): SiLU(inplace=True)
      )
      (m): ModuleList(
        (0-2): 3 x Bottleneck(
          (cv1): Conv(
            (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
          (cv2): Conv(
            (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
        )
      )
    )
    (16): Conv(
      (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
      (act): SiLU(inplace=True)
    )
    (17): Concat()
    (18): C2f(
      (cv1): Conv(
        (conv): Conv2d(768, 512, kernel_size=(1, 1), stride=(1, 1))
        (act): SiLU(inplace=True)
      )
      (cv2): Conv(
        (conv): Conv2d(1280, 512, kernel_size=(1, 1), stride=(1, 1))
        (act): SiLU(inplace=True)
      )
      (m): ModuleList(
        (0-2): 3 x Bottleneck(
          (cv1): Conv(
            (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
          (cv2): Conv(
            (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
        )
      )
    )
    (19): Conv(
      (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
      (act): SiLU(inplace=True)
    )
    (20): Concat()
    (21): C2f(
      (cv1): Conv(
        (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1))
        (act): SiLU(inplace=True)
      )
      (cv2): Conv(
        (conv): Conv2d(1280, 512, kernel_size=(1, 1), stride=(1, 1))
        (act): SiLU(inplace=True)
      )
      (m): ModuleList(
        (0-2): 3 x Bottleneck(
          (cv1): Conv(
            (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
          (cv2): Conv(
            (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
        )
      )
    )
    (22): PostDetect(
      (cv2): ModuleList(
        (0): Sequential(
          (0): Conv(
            (conv): Conv2d(256, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
          (1): Conv(
            (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
          (2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
        )
        (1-2): 2 x Sequential(
          (0): Conv(
            (conv): Conv2d(512, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
          (1): Conv(
            (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
          (2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
        )
      )
      (cv3): ModuleList(
        (0): Sequential(
          (0): Conv(
            (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
          (1): Conv(
            (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
          (2): Conv2d(256, 35, kernel_size=(1, 1), stride=(1, 1))
        )
        (1-2): 2 x Sequential(
          (0): Conv(
            (conv): Conv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
          (1): Conv(
            (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            (act): SiLU(inplace=True)
          )
          (2): Conv2d(256, 35, kernel_size=(1, 1), stride=(1, 1))
        )
      )
      (dfl): DFL(
        (conv): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False)
      )
    )
  )
)

yolov8网络从1-21层与pt文件相对应是BackBone和Neck模块,22层是Head模块。

二、转ONNX步骤

2.1 yolov8官方

python 复制代码
"""
代码解释
pt模型转为onnx格式
"""
import os
from ultralytics import YOLO
model = YOLO("weights/best.pt")
success = model.export(format="onnx")

print("导出成功!")

将pytorch转为onnx后,pytorch支持的一系列计算就会转为onnx所支持的算子,若没有相对应的就会使用其他方式进行替换(比如多个计算替换其单个)。比较常见是conv和SiLU合并成一个Conv模块进行。

其中,1*4*8400表示每张图片预测 8400 个候选框,每个框有 4 个参数边界框坐标 (x,y,w,h)。 1*35*8400类同,1和4800代表意义相同,35是类别属性包含了其置信度概率值。

最后两个输出Concat操作,得到1*39*8400。最后根据这个结果去进行后续操作。

2.2 自定义转换

所谓的自定义转换其实是在转onnx时,对1*39*8400多加了一系列自定义操作例如NMS等。

2.2.1 加载权重并优化结构

python 复制代码
YOLOv8 = YOLO(args.weights) #替换为自己的权重
model = YOLOv8.model.fuse().eval()

2.2.2 后处理检测模块

python 复制代码
def gen_anchors(feats: Tensor,
                 strides: Tensor,
                 grid_cell_offset: float = 0.5) -> Tuple[Tensor, Tensor]:
    """
    生成锚点,并计算每个锚点的步幅。

    参数:
    feats (Tensor): 特征图,通常来自不同的网络层。
    strides (Tensor): 每个特征图的步幅(stride)。
    grid_cell_offset (float): 网格单元的偏移量,默认为0.5。

    返回:
    Tuple[Tensor, Tensor]: 锚点的坐标和对应的步幅张量。
    """
    anchor_points, stride_tensor = [], []
    assert feats is not None  # 确保输入的特征图不为空
    dtype, device = feats[0].dtype, feats[0].device  # 获取特征图的数据类型和设备

    # 遍历每个特征图,计算锚点
    for i, stride in enumerate(strides):
        _, _, h, w = feats[i].shape  # 获取特征图的高(h)和宽(w)
        sx = torch.arange(end=w, device=device,
                          dtype=dtype) + grid_cell_offset  # 计算 x 轴上的锚点位置
        sy = torch.arange(end=h, device=device,
                          dtype=dtype) + grid_cell_offset  # 计算 y 轴上的锚点位置
        sy, sx = torch.meshgrid(sy, sx)  # 生成网格坐标
        anchor_points.append(torch.stack((sx, sy), -1).view(-1, 2))  # 将 x 和 y 组合成坐标点
        stride_tensor.append(
            torch.full((h * w, 1), stride, dtype=dtype, device=device))  # 生成步幅张量

    return torch.cat(anchor_points), torch.cat(stride_tensor)  # 返回合并后的锚点和步幅


class customize_NMS(torch.autograd.Function):
    """
    继承torch.autograd.Function
    用于TensorRT的非极大值抑制(NMS)自定义函数。
    """

    @staticmethod
    def forward(
            ctx: Graph,
            boxes: Tensor,
            scores: Tensor,
            iou_threshold: float = 0.65,
            score_threshold: float = 0.25,
            max_output_boxes: int = 100,
            background_class: int = -1,
            box_coding: int = 0,
            plugin_version: str = '1',
            score_activation: int = 0
    ) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
        """
        正向计算NMS输出,模拟真实的TensorRT NMS过程。

        参数:
        boxes (Tensor): 预测的边界框。
        scores (Tensor): 预测框的置信度分数。
        其他参数同样为NMS的超参数。

        返回:
        Tuple[Tensor, Tensor, Tensor, Tensor]: 包含检测框数量、框坐标、置信度分数和类别标签。
        """
        batch_size, num_boxes, num_classes = scores.shape  # 获取批量大小、框数量和类别数
        num_dets = torch.randint(0,
                                 max_output_boxes, (batch_size, 1),
                                 dtype=torch.int32)  # 随机生成检测框数量(仅为模拟)
        boxes = torch.randn(batch_size, max_output_boxes, 4)  # 随机生成预测框
        scores = torch.randn(batch_size, max_output_boxes)  # 随机生成分数
        labels = torch.randint(0,
                               num_classes, (batch_size, max_output_boxes),
                               dtype=torch.int32)  # 随机生成类别标签

        return num_dets, boxes, scores, labels  # 返回模拟的结果

    @staticmethod
    def symbolic(
            g,
            boxes: Value,
            scores: Value,
            iou_threshold: float = 0.45,
            score_threshold: float = 0.25,
            max_output_boxes: int = 100,
            background_class: int = -1,
            box_coding: int = 0,
            score_activation: int = 0,
            plugin_version: str = '1') -> Tuple[Value, Value, Value, Value]:
        """
        计算图的符号函数,供TensorRT使用。

        参数:
        g: 计算图对象
        boxes (Value), scores (Value): 传入的边界框和得分
        其他参数是用于配置NMS的参数。

        返回:
        经过NMS处理的检测框、得分、类别标签及检测框数量。
        """
        out = g.op('TRT::EfficientNMS_TRT',
                   boxes,
                   scores,
                   iou_threshold_f=iou_threshold,
                   score_threshold_f=score_threshold,
                   max_output_boxes_i=max_output_boxes,
                   background_class_i=background_class,
                   box_coding_i=box_coding,
                   plugin_version_s=plugin_version,
                   score_activation_i=score_activation,
                   outputs=4)  # 使用TensorRT的EfficientNMS插件

        nums_dets, boxes, scores, classes = out  # 获取输出的检测框数量、框坐标、得分和类别
        return nums_dets, boxes, scores, classes  # 返回结果

class Post_process_Detect(nn.Module):
    """
    用于后处理的检测模块,执行检测后的非极大值抑制(NMS)。
    """
    export = True
    shape = None
    dynamic = False
    iou_thres = 0.65  # 默认的IoU阈值
    conf_thres = 0.25  # 默认的置信度阈值
    topk = 100  # 输出的最大检测框数量

    def __init__(self, *args, **kwargs):
        super().__init__()

    def forward(self, x):
        """
        执行后处理操作,提取预测框、置信度和类别。

        参数:
        x (Tensor): 输入的特征图。

        返回:
        Tuple[Tensor, Tensor, Tensor]: 预测框、置信度和类别。
        """
        shape = x[0].shape  # 获取输入的形状
        b, res, b_reg_num = shape[0], [], self.reg_max * 4
        # b为特征列表第一个元素的批量大小,表示处理的样本数量,
        # res声明一个空列表存储处理过的特征图
        # b_reg_num为回归框的数量
        #遍历特征层(self.nl表示特征层数),将每一层的框预测和分类预测拼接。
        for i in range(self.nl):
            res.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))  # 特征拼接
        # 调用
        # make_anchors
        # 生成锚点和步幅,用于还原边界框的绝对坐标。
        if self.dynamic or self.shape != shape:
            self.anchors, self.strides = (x.transpose(
                0, 1) for x in gen_anchors(x, self.stride, 0.5))  # 生成锚点和步幅
            self.shape = shape  # 更新输入的形状

        x = [i.view(b, self.no, -1) for i in res]  # 调整特征图形状

        y = torch.cat(x, 2)  # 拼接所有特征图
        boxes, scores = y[:, :b_reg_num, ...], y[:, b_reg_num:, ...].sigmoid()  # 提取框和分数
        boxes = boxes.view(b, 4, self.reg_max, -1).permute(0, 1, 3, 2)  # 变换框的形状
        boxes = boxes.softmax(-1) @ torch.arange(self.reg_max).to(boxes)  # 对框进行softmax处理
        boxes0, boxes1 = -boxes[:, :2, ...], boxes[:, 2:, ...]  # 分离框的不同部分
        boxes = self.anchors.repeat(b, 2, 1) + torch.cat([boxes0, boxes1], 1)  # 合并框坐标
        boxes = boxes * self.strides  # 乘以步幅

        return customize_NMS.apply(boxes.transpose(1, 2), scores.transpose(1, 2),
                             self.iou_thres, self.conf_thres, self.topk)  # 执行NMS


def optim(module: nn.Module):
    setattr(module, '__class__', Post_process_Detect)

for item in model.modules():
    optim(item)
    item.to(args.device) #输入cpu或者gpu的卡号

自定义这里是在yolo官方得到的1*4*8400和1*35*8400进行矩阵转换2<->3,最后引入EfficientNMS_TRT插件后处理,可以有效加速NMS处理。

2.2.3 EfficientNMS_TRT插件

EfficientNMS_TRT 是 TensorRT 中的一个高效非极大值抑制 (NMS) 插件,用于快速过滤检测框。它通过优化的 CUDA 实现来执行 NMS 操作,特别适合于深度学习推理阶段中目标检测任务的后处理。支持在一个批次中对多个图像同时执行 NMS。

输出结果为**num_dets** , detection_boxes, detection_scores, detection_classes ,分别代表经过 NMS 筛选后保留的边界框数,每张图片保留的检测框的坐标,每张图片中保留下来的检测框的分数(由高到低),每个保留下来的边界框的类别索引。

三、结语

仅供学习使用!!!

相关推荐
一二爱上蜜桃猫15 分钟前
人工智能 前馈神经网络练习题
人工智能·深度学习·神经网络
佚明zj35 分钟前
Transformer 和 Attention机制入门
人工智能·深度学习·transformer
取个名字真难呐1 小时前
随机置矩阵列为0[矩阵乘法pytorch版]
pytorch·python·矩阵
程序猿阿伟1 小时前
《鸿蒙微内核与人工智能算法协同,开启智能系统新时代》
人工智能·计算机视觉
Anlici2 小时前
魔搭 AI 框架开发与 LangChain 的结合
人工智能·python·开源
智能汽车人2 小时前
Robot---奇思妙想轮足机器人
人工智能·机器人·自动驾驶
cooldream20092 小时前
Microsoft Azure Cosmos DB:全球分布式、多模型数据库服务
数据库·人工智能·microsoft·知识图谱·azure
CSJK-2 小时前
模式识别与机器学习 | 第九章 降维
人工智能·机器学习·pca
神经美学_茂森2 小时前
【通俗理解】AI的两次寒冬:从感知机困局到深度学习前夜
人工智能·深度学习
勤劳的进取家2 小时前
支持向量机(SVM)算法
人工智能·机器学习·支持向量机