论文阅读《Dual Personalization on Federated Recommendation》

论文概况

本文是2024 IJCAI的一篇联邦推荐论文,提出了提出了一种新的双重个性化机制,以有效地学习用户和项目的细粒度个性化。

Introduction

  • 我们设计了一种新的双重个性化机制,通过个性化评分功能和细粒度的项目嵌入个性化来捕获用户偏好。

  • 舍弃用户嵌入,重视物品嵌入带来的用户喜好。

Method

A.目标函数

推荐损失。结合项目嵌入模块和评分功能,我们将第i个用户推荐模型对第j个项目的预测公式为:
r ^ i j = S i ( E i ( e j ) ) \hat{r}{ij}=S_i(E_i(e^j)) r^ij=Si(Ei(ej))
L i ( θ i ; r , r ^ ) = − ∑ ( i , j ) ∈ D i log ⁡ r ^ i j − ∑ ( i , j ′ ) ∈ D i − log ⁡ ( 1 − r ^ i j ′ ) L
{i}(\theta_{i};r,\hat{r})=-\sum_{(i,j)\in D_{i}}\log\hat{r}{ij}-\sum{(i,j^{\prime})\in D_{i}^{-}}\log(1-\hat{r}_{ij^{\prime}}) Li(θi;r,r^)=−(i,j)∈Di∑logr^ij−(i,j′)∈Di−∑log(1−r^ij′)

B.双重个性化

我们提出了一种双重个性化机制,使所提出的框架能够同时对用户和项目保持细粒度的个性化。该模型由以θ s为参数的神经评分函数和以θ m为参数的项目嵌入模块组成。考虑到个性化和隐私性,我们实现了部分模型聚合策略,将分数函数作为设备上的私有模块,同时将条目嵌入共享到服务器。因此,服务器只从项目嵌入模块中聚合梯度或参数θ m。

C.结果

总结

设计非常简单,性能也很好,类似会话推荐省略了用户特征嵌入仅通过物品特征计算用户喜好。

相关推荐
wbzuo1 天前
Clip:Learning Transferable Visual Models From Natural Language Supervision
论文阅读·人工智能·transformer
想成为PhD的小提琴手2 天前
论文阅读13——基于大语言模型和视觉模态融合的可解释端到端自动驾驶框架:DriveLLM-V的设计与应用
论文阅读·语言模型·自动驾驶
想看雪的瓜2 天前
Origin将2D普通的XPS曲线图升级为三维XPS瀑布图
论文阅读·论文笔记
DuHz3 天前
基于信号分解的FMCW雷达相互干扰抑制——论文阅读
论文阅读·算法·汽车·信息与通信·毫米波雷达
m0_650108243 天前
MiniGPT-4:解锁 LLM 驱动的高级视觉语言能力
论文阅读·开源·视觉语言大模型·minigpt-4·跨模态对齐·强llm+视觉对齐
WSKH09294 天前
【论文阅读】(2016)Dual Inequalities for Stabilized Column Generation Revisited
论文阅读·线性规划·运筹学·列生成·对偶不等式·稳定列生成
程途拾光1584 天前
用流程图优化工作流:快速识别冗余环节,提升效率
大数据·论文阅读·人工智能·流程图·论文笔记
蓝海星梦4 天前
【论文笔记】R-HORIZON:重塑长周期推理评估与训练范式
论文阅读·人工智能·深度学习·自然语言处理·大型推理模型
张较瘦_4 天前
[论文阅读] 软件工程 | 解决Java项目痛点:DepUpdater如何平衡依赖升级的“快”与“稳”
java·开发语言·论文阅读
0x2114 天前
[论文阅读]Friend or Foe: How LLMs‘ Safety Mind Gets Fooled by Intent Shift Attack
论文阅读