论文阅读《Dual Personalization on Federated Recommendation》

论文概况

本文是2024 IJCAI的一篇联邦推荐论文,提出了提出了一种新的双重个性化机制,以有效地学习用户和项目的细粒度个性化。

Introduction

  • 我们设计了一种新的双重个性化机制,通过个性化评分功能和细粒度的项目嵌入个性化来捕获用户偏好。

  • 舍弃用户嵌入,重视物品嵌入带来的用户喜好。

Method

A.目标函数

推荐损失。结合项目嵌入模块和评分功能,我们将第i个用户推荐模型对第j个项目的预测公式为:
r ^ i j = S i ( E i ( e j ) ) \hat{r}{ij}=S_i(E_i(e^j)) r^ij=Si(Ei(ej))
L i ( θ i ; r , r ^ ) = − ∑ ( i , j ) ∈ D i log ⁡ r ^ i j − ∑ ( i , j ′ ) ∈ D i − log ⁡ ( 1 − r ^ i j ′ ) L
{i}(\theta_{i};r,\hat{r})=-\sum_{(i,j)\in D_{i}}\log\hat{r}{ij}-\sum{(i,j^{\prime})\in D_{i}^{-}}\log(1-\hat{r}_{ij^{\prime}}) Li(θi;r,r^)=−(i,j)∈Di∑logr^ij−(i,j′)∈Di−∑log(1−r^ij′)

B.双重个性化

我们提出了一种双重个性化机制,使所提出的框架能够同时对用户和项目保持细粒度的个性化。该模型由以θ s为参数的神经评分函数和以θ m为参数的项目嵌入模块组成。考虑到个性化和隐私性,我们实现了部分模型聚合策略,将分数函数作为设备上的私有模块,同时将条目嵌入共享到服务器。因此,服务器只从项目嵌入模块中聚合梯度或参数θ m。

C.结果

总结

设计非常简单,性能也很好,类似会话推荐省略了用户特征嵌入仅通过物品特征计算用户喜好。

相关推荐
dundunmm12 小时前
论文阅读:Towards Faster Deep Graph Clustering via Efficient Graph Auto-Encoder
论文阅读·人工智能·机器学习·数据挖掘·深度聚类·图聚类
敲代码的猴先生15 小时前
论文分享 | PromptFuzz:用于模糊测试驱动程序生成的提示模糊测试
论文阅读·笔记·学习·测试工具·安全·语言模型
WoooChi1 天前
【论文阅读】DebSDF:深入研究神经室内场景重建的细节和偏差
论文阅读
勤奋的小笼包3 天前
【论文阅读】MedCLIP: Contrastive Learning from Unpaired Medical Images and Text
论文阅读·人工智能·语言模型·chatgpt·nlp·论文笔记
WoooChi5 天前
【论文阅读】根据曲线进行 3D 曲面建模
论文阅读·3d
Do1phln5 天前
论文阅读 - 《Large Language Models Are Zero-Shot Time Series Forecasters》
论文阅读·人工智能·语言模型
小嗷犬5 天前
【论文笔记】Visual Alignment Pre-training for Sign Language Translation
论文阅读·人工智能·机器翻译·多模态·手语翻译·手语识别
请站在我身后6 天前
最新的强大的文生视频模型Pyramid Flow 论文阅读及复现
论文阅读·人工智能·神经网络·计算机视觉·stable diffusion·transformer
爱补鱼的猫猫6 天前
6、InstructGPT论文笔记(人类反馈指令,对齐)
论文阅读
NONE-C6 天前
加电:DETR论文阅读
论文阅读