论文阅读《Dual Personalization on Federated Recommendation》

论文概况

本文是2024 IJCAI的一篇联邦推荐论文,提出了提出了一种新的双重个性化机制,以有效地学习用户和项目的细粒度个性化。

Introduction

  • 我们设计了一种新的双重个性化机制,通过个性化评分功能和细粒度的项目嵌入个性化来捕获用户偏好。

  • 舍弃用户嵌入,重视物品嵌入带来的用户喜好。

Method

A.目标函数

推荐损失。结合项目嵌入模块和评分功能,我们将第i个用户推荐模型对第j个项目的预测公式为:
r ^ i j = S i ( E i ( e j ) ) \hat{r}{ij}=S_i(E_i(e^j)) r^ij=Si(Ei(ej))
L i ( θ i ; r , r ^ ) = − ∑ ( i , j ) ∈ D i log ⁡ r ^ i j − ∑ ( i , j ′ ) ∈ D i − log ⁡ ( 1 − r ^ i j ′ ) L
{i}(\theta_{i};r,\hat{r})=-\sum_{(i,j)\in D_{i}}\log\hat{r}{ij}-\sum{(i,j^{\prime})\in D_{i}^{-}}\log(1-\hat{r}_{ij^{\prime}}) Li(θi;r,r^)=−(i,j)∈Di∑logr^ij−(i,j′)∈Di−∑log(1−r^ij′)

B.双重个性化

我们提出了一种双重个性化机制,使所提出的框架能够同时对用户和项目保持细粒度的个性化。该模型由以θ s为参数的神经评分函数和以θ m为参数的项目嵌入模块组成。考虑到个性化和隐私性,我们实现了部分模型聚合策略,将分数函数作为设备上的私有模块,同时将条目嵌入共享到服务器。因此,服务器只从项目嵌入模块中聚合梯度或参数θ m。

C.结果

总结

设计非常简单,性能也很好,类似会话推荐省略了用户特征嵌入仅通过物品特征计算用户喜好。

相关推荐
HollowKnightZ22 分钟前
论文阅读笔记:Class-Incremental Learning: A Survey
论文阅读·笔记
Eastmount3 小时前
[论文阅读] (45)C&S24 AISL: 基于攻击意图驱动与序列学习方法的APT攻击检测
论文阅读·系统安全·溯源图·攻击意图·apt攻击检测
小明_GLC5 小时前
ITransformer: Inverted Transformers Are Effective for Time Series Forecasting
论文阅读
依夏c6 小时前
【论文笔记•(多智能体)】Ask Patients with Patience
论文阅读
明明真系叻6 小时前
2025.12.21论文阅读
论文阅读·量子计算
m0_650108247 小时前
DSGN:基于深度立体几何网络的 3D 目标检测革新
论文阅读·3d目标检测·立体视觉·3d几何体积表示·端到端联合优化·dsgn
m0_650108247 小时前
FlashLightNet:实时检测与分类静态和闪烁交通灯状态的端到端深度学习框架
论文阅读·自动驾驶·视觉单模态·交通灯状态检测·flashlightnet
m0_650108248 小时前
PETR:多视图 3D 目标检测的位置嵌入变换新范式
论文阅读·自动驾驶·位置编码·视觉单模态·多视角3d目标检测·petr·3d位置信息与2d特征
Cuby!8 小时前
IEEE Wireless Communications 2025年论文整理2(中英文摘要)
论文阅读·学习·信息与通信
youcans_1 天前
【医学影像 AI】FunBench:评估多模态大语言模型的眼底影像解读能力
论文阅读·人工智能·大语言模型·多模态·眼底图像