论文阅读《Dual Personalization on Federated Recommendation》

论文概况

本文是2024 IJCAI的一篇联邦推荐论文,提出了提出了一种新的双重个性化机制,以有效地学习用户和项目的细粒度个性化。

Introduction

  • 我们设计了一种新的双重个性化机制,通过个性化评分功能和细粒度的项目嵌入个性化来捕获用户偏好。

  • 舍弃用户嵌入,重视物品嵌入带来的用户喜好。

Method

A.目标函数

推荐损失。结合项目嵌入模块和评分功能,我们将第i个用户推荐模型对第j个项目的预测公式为:
r ^ i j = S i ( E i ( e j ) ) \hat{r}{ij}=S_i(E_i(e^j)) r^ij=Si(Ei(ej))
L i ( θ i ; r , r ^ ) = − ∑ ( i , j ) ∈ D i log ⁡ r ^ i j − ∑ ( i , j ′ ) ∈ D i − log ⁡ ( 1 − r ^ i j ′ ) L
{i}(\theta_{i};r,\hat{r})=-\sum_{(i,j)\in D_{i}}\log\hat{r}{ij}-\sum{(i,j^{\prime})\in D_{i}^{-}}\log(1-\hat{r}_{ij^{\prime}}) Li(θi;r,r^)=−(i,j)∈Di∑logr^ij−(i,j′)∈Di−∑log(1−r^ij′)

B.双重个性化

我们提出了一种双重个性化机制,使所提出的框架能够同时对用户和项目保持细粒度的个性化。该模型由以θ s为参数的神经评分函数和以θ m为参数的项目嵌入模块组成。考虑到个性化和隐私性,我们实现了部分模型聚合策略,将分数函数作为设备上的私有模块,同时将条目嵌入共享到服务器。因此,服务器只从项目嵌入模块中聚合梯度或参数θ m。

C.结果

总结

设计非常简单,性能也很好,类似会话推荐省略了用户特征嵌入仅通过物品特征计算用户喜好。

相关推荐
七元权2 小时前
论文阅读-Gated CRF Loss for Weakly Supervised Semantic Image Segmentation
论文阅读·深度学习·计算机视觉·语义分割·弱监督
有Li2 天前
关注与优化:用于骨龄评估的交互式关键点定位与颈椎定量分析|文献速递-深度学习人工智能医疗图像
论文阅读·医学生
AustinCyy3 天前
【论文笔记】DOC: Improving Long Story Coherence With Detailed Outline Control
论文阅读·nlp
weixin_443290693 天前
【论文阅读-Part1】PIKE-RAG: sPecIalized KnowledgE and Rationale Augmented Generation
大数据·论文阅读
不解风水5 天前
【论文阅读】一种基于经典机器学习的肌电下肢意图检测方法,用于人机交互系统
论文阅读·人机交互
爱补鱼的猫猫5 天前
17、CryptoMamba论文笔记
论文阅读
大熊背5 天前
《Fast Automatic White Balancing Method by Color Histogram Stretching》论文笔记
论文阅读·白平衡
CV-杨帆6 天前
论文阅读 arxiv 2024 MemGPT: Towards LLMs as Operating Systems
论文阅读
AAA锅包肉批发6 天前
论文阅读:Aircraft Trajectory Prediction Model Based on Improved GRU Structure
论文阅读·深度学习·gru
星夜Zn7 天前
Nature论文-预测和捕捉人类认知的基础模型-用大模型模拟人类认知
论文阅读·人工智能·大语言模型·nature·认知建模·统一认知模型