分类算法——基于heart数据集实现

1 heart数据集------描述性统计分析

python 复制代码
import matplotlib.pyplot as plt
import pandas as pd

# Load the dataset
heart = pd.read_csv(r"heart.csv", sep=',')

# Check the columns in the DataFrame
print(heart.columns)

a=heart.loc[:, 'y'].value_counts()
print(a)
heart.loc[:, 'y'].value_counts().plot(kind='bar')
#设置0和1的标签,0为无心脏病,1为有心脏病
plt.xticks([0, 1], ['No heart disease', 'Yes heart disease'])
#设置横坐标旋转45度
plt.xticks(rotation=0)
# 设置矩形数据标签
for x, y in enumerate(heart.loc[:, 'y'].value_counts()):
    plt.text(x, y, '%s' % y, ha='center', va='bottom')
#更改颜色
plt.bar([0, 1], heart.loc[:, 'y'].value_counts(), color=['#FF0000', '#00FF00'])

#设置标题
plt.title('Heart disease distribution')
plt.show()
复制代码
Index(['sbp', 'tobacco', 'ldl', 'adiposity', 'age', 'y'], dtype='object')
y
0    302
1    160
Name: count, dtype: int64

2 Cp交叉验证,选择最优的k值进行判别分析

python 复制代码
#Cp交叉验证,选择最优的k值进行判别分析
from sklearn.model_selection import cross_val_score
from sklearn.neighbors import KNeighborsClassifier
    
X = heart.iloc[:, 0:5]
y = heart.loc[:, 'y']
k_range = range(1, 31)
k_scores = []
for k in k_range:
    knn = KNeighborsClassifier(n_neighbors=k)
    scores = cross_val_score(knn, X, y, cv=10, scoring='accuracy')
    k_scores.append(scores.mean())
    
plt.plot(k_range, k_scores)
plt.xlabel('Value of K for KNN')
plt.ylabel('Cross-Validated Accuracy')

#选择最优的k值
k = k_scores.index(max(k_scores)) + 1
print('Optimal k: %d' % k)
#绘制最优k值在图中的位置
plt.plot(k_range, k_scores)
plt.xlabel('Value of K for KNN')
plt.ylabel('Cross-Validated Accuracy')
plt.scatter(k, max(k_scores), color='red')

#显示最优k直在图中等于多少
plt.text(k, max(k_scores), '(%d, %.2f)' % (k, max(k_scores)), ha='center', va='bottom')
plt.show()
复制代码
Optimal k: 22

KNN分类器

python 复制代码
#使用最优k值建立KNN进行分类
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

# Initialize and fit the KNN classifier
knn = KNeighborsClassifier(n_neighbors=k)
knn.fit(X_train, y_train)

# Predict and print accuracy
y_pred = knn.predict(X_test)
print('Accuracy: %.2f' % accuracy_score(y_test, y_pred))

#绘制决策区域
from matplotlib.colors import ListedColormap
import numpy as np
from sklearn.decomposition import PCA

def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):
    # Reduce dimensionality to 2D using PCA
    pca = PCA(n_components=2)
    X_pca = pca.fit_transform(X)

    # setup marker generator and color map
    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])

    # plot the decision surface
    x1_min, x1_max = X_pca[:, 0].min() - 1, X_pca[:, 0].max() + 1
    x2_min, x2_max = X_pca[:, 1].min() - 1, X_pca[:, 1].max() + 1
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
                           np.arange(x2_min, x2_max, resolution))
    Z = classifier.predict(pca.inverse_transform(np.array([xx1.ravel(), xx2.ravel()]).T))
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())

    for idx, cl in enumerate(np.unique(y)):
        plt.scatter(x=X_pca[y == cl, 0], y=X_pca[y == cl, 1],
                    alpha=0.8, c=[cmap(idx)],
                    marker=markers[idx], label=cl)

    # highlight test samples
    if test_idx:
        X_test, y_test = X_pca[test_idx, :2], y[test_idx]
        plt.scatter(X_test[:, 0], X_test[:, 1],
                    alpha=1.0, linewidth=1, marker='o',
                    s=55, label='test set')
        
# Plot decision regions using PCA-transformed features
X_combined = np.vstack((X_train, X_test))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(X=X_combined, y=y_combined, classifier=knn, test_idx=range(len(y_train), len(y_train) + len(y_test)))
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.legend(loc='upper left')
plt.show()
复制代码
Accuracy: 0.69

朴素贝叶斯分类器

python 复制代码
#朴素贝叶斯分类器
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.naive_bayes import GaussianNB
from matplotlib.colors import ListedColormap

# Load the dataset
heart = pd.read_csv(r"heart.csv", sep=',')

# Select features and target
X = heart.iloc[:, 0:5]
y = heart.loc[:, 'y']

# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

# Initialize and fit the Gaussian Naive Bayes classifier
gnb = GaussianNB()
gnb.fit(X_train, y_train)

# Predict and print accuracy
y_pred = gnb.predict(X_test)
print('Accuracy: %.2f' % accuracy_score(y_test, y_pred))

# Define the function to plot decision regions
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.decomposition import PCA

def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):
    # Reduce dimensionality to 2D using PCA
    pca = PCA(n_components=2)
    X_pca = pca.fit_transform(X)

    # setup marker generator and color map
    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])

    # plot the decision surface
    x1_min, x1_max = X_pca[:, 0].min() - 1, X_pca[:, 0].max() + 1
    x2_min, x2_max = X_pca[:, 1].min() - 1, X_pca[:, 1].max() + 1
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
                           np.arange(x2_min, x2_max, resolution))
    Z = classifier.predict(pca.inverse_transform(np.array([xx1.ravel(), xx2.ravel()]).T))
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())

    for idx, cl in enumerate(np.unique(y)):
        plt.scatter(x=X_pca[y == cl, 0], y=X_pca[y == cl, 1],
                    alpha=0.8, c=[cmap(idx)],
                    marker=markers[idx], label=cl)

    # # highlight test samples
    # if test_idx:
    #     X_test, y_test = X_pca[test_idx, :2], y[test_idx]
    #     plt.scatter(X_test[:, 0], X_test[:, 1],
    #                 alpha=1.0, linewidth=1, marker='o',
    #                 s=55, label='test set')

# Plot decision regions using PCA-transformed features
X_combined = np.vstack((X_train, X_test))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(X=X_combined, y=y_combined, classifier=gnb, test_idx=range(len(y_train), len(y_train) + len(y_test)))
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.legend(loc='upper left')
plt.show()
复制代码
Accuracy: 0.70

SVM分类器

python 复制代码
#使用SVM进行分类
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
    
from sklearn.svm import SVC

# Load the dataset
heart = pd.read_csv(r"heart.csv", sep=',')
# Select features and target
X = heart.iloc[:, 0:5]
y = heart.loc[:, 'y']
    
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

# Initialize and fit the SVM classifier
svm = SVC(kernel='linear', C=1.0, random_state=0)
svm.fit(X_train, y_train)

# Predict and print accuracy
y_pred = svm.predict(X_test)
print('Accuracy: %.2f' % accuracy_score(y_test, y_pred))
复制代码
Accuracy: 0.66
python 复制代码
# Plot decision regions using PCA-transformed features
X_combined = np.vstack((X_train, X_test))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(X=X_combined, y=y_combined, classifier=svm, test_idx=range(len(y_train), len(y_train) + len(y_test)))
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.legend(loc='upper left')
plt.show()

随机森林分类

python 复制代码
# Import necessary libraries
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_graphviz
import pydotplus
from IPython.display import Image

# Load the dataset
heart = pd.read_csv(r"heart.csv", sep=',')

# Select features and target
X = heart.iloc[:, 0:5]
y = heart.loc[:, 'y']

# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

# Initialize and fit the Decision Tree classifier
tree = DecisionTreeClassifier(max_depth=3, random_state=0)
tree.fit(X_train, y_train)

# Predict and print accuracy
y_pred = tree.predict(X_test)
print('Accuracy: %.2f' % accuracy_score(y_test, y_pred))

# Export the decision tree to a file
export_graphviz(tree, out_file='tree.dot', feature_names=X.columns)

# Convert the dot file to a png
graph = pydotplus.graph_from_dot_file('tree.dot')
Image(graph.create_png())

# Plot decision regions using PCA-transformed features
X_combined = np.vstack((X_train, X_test))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(X=X_combined, y=y_combined, classifier=tree, test_idx=range(len(y_train), len(y_train) + len(y_test)))
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.legend(loc='upper left')
plt.show()
复制代码
Accuracy: 0.68

决策树分类

python 复制代码
#绘制出决策树
from sklearn.tree import plot_tree
plt.figure(figsize=(20, 10))
plot_tree(tree, filled=True, feature_names=X.columns, class_names=['0', '1'])
plt.show()
相关推荐
Moutai码农13 分钟前
1.5、机器学习-回归算法
人工智能·机器学习·回归
Daisy_JuJuJu30 分钟前
【科研成果速递-IJGIS】如何描述与分类移动对象的时空模式?一个新的分类框架与体系!
分类·数据挖掘·科研·运动模式·移动对象
非门由也1 小时前
《sklearn机器学习——绘制分数以评估模型》验证曲线、学习曲线
人工智能·机器学习·sklearn
THMAIL1 小时前
深度学习从入门到精通 - AutoML与神经网络搜索(NAS):自动化模型设计未来
人工智能·python·深度学习·神经网络·算法·机器学习·逻辑回归
Debug_Snail1 小时前
【营销策略算法】关联规则学习-购物篮分析
大数据·人工智能
JJJJ_iii1 小时前
【左程云算法03】对数器&算法和数据结构大致分类
数据结构·算法·分类
山烛1 小时前
深度学习:残差网络ResNet与迁移学习
人工智能·python·深度学习·残差网络·resnet·迁移学习
CareyWYR1 小时前
每周AI论文速递(250901-250905)
人工智能
亚里随笔2 小时前
VERLTOOL:打通LLM工具强化学习的“任督二脉”,实现多模态多任务统一训练
人工智能·语言模型·llm·agentic
API流转日记2 小时前
对接gemini-2.5-flash-image-preview教程
人工智能·gpt·ai·chatgpt·ai作画