机器学习策略(2)符号学派

本节将讨论这些学派的代表性方法,并探究它们背后的思维方式和适用场景。通过学习四大学派,读者不仅能掌握不同的技术手段,还能培养多角度分析和解决问题的能力,为未来学习和实践构建完整的知识框架。

符号学派认为,认知的基本单元是符号,而认知过程则是对这些符号进行逻辑运算。根据这一思想,可以让计算机通过符号演算来模拟人类的智能行为。符号学派的研究者坚信,只要能正确表示和操作符号,计算机就能表现出足够的智能。从 20 世纪 50 年代中期到 80 年代后期,符号学派一直是人工智能研究的主流,其基于符号演算的智能理论及实践在当时占据了主导地位。

传统上,符号系统中的知识是由人类专家预先定义的。然而,在实际应用中,预定义规则往往无法涵盖所有新知识。为解决这一问题,符号学派的研究者引入了学习方法,通过整理数据发现新规律,使符号系统更适应复杂多变的现实环境。

符号学派从数据中总结出新规则

我们以专家系统来说明符号学派的学习过程。专家系统通常使用产生式规则进行符号演算,这些规则一般以"如果-那么"的形式呈现。例如,观察到"天空有云"和"湿度大"这两个条件时,可以推理出"可能会下雨"的结论。这些规则最初可能基于气象专家的经验设计,但也可以从观测数据中提取出新的规则,如图"如果天空有云且空气湿度大于 80%,那么可能会下雨",然后将其加入知识库以供后续推理,进而增强系统的适用性。

符号学派在人工智能早期取得了重要进展,但其局限性也逐渐显现。其主要问题在于学习能力有限------系统通常依赖预先定义的规则,且一旦规则确定,修改规则可能会破坏整个系统的稳定性,导致推理结果不可靠。

相关推荐
tiger1191 小时前
如何进行高效的大模型推理?
人工智能·llm·大模型优化
林籁泉韵71 小时前
AI搜索时代,企业如何选择GEO服务商?
人工智能
️公子1 小时前
无人直播系统-黑客主题
人工智能·c#·visual studio
九河云1 小时前
共享出行数字化转型:车辆调度 AI 优化与用户体验数据化迭代实践
大数据·人工智能·安全·数字化转型
TsingtaoAI1 小时前
企业实训:AI运维工程师实训——某外资商业银行
运维·人工智能
海边夕阳20061 小时前
【每天一个AI小知识】:什么是语义分割?
人工智能·经验分享·python·深度学习·机器学习·语义分割
搞科研的小刘选手1 小时前
【人工智能专题】第五届人工智能与大数据国际学术研讨会 (AIBDF 2025)
大数据·人工智能·数据分析·学术会议·核心算法
慧都小项1 小时前
深度解析汽车软件测试:性能安全与AI集成
人工智能·安全·汽车