Python轴承故障诊断 (21)基于VMD-CNN-BiTCN的创新诊断模型

往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

Pytorch-LSTM轴承故障一维信号分类(一)-CSDN博客

Pytorch-CNN轴承故障一维信号分类(二)-CSDN博客

Pytorch-Transformer轴承故障一维信号分类(三)-CSDN博客

三十多个开源数据集 | 故障诊断再也不用担心数据集了!

Python轴承故障诊断 (一)短时傅里叶变换STFT-CSDN博客

Python轴承故障诊断 (二)连续小波变换CWT-CSDN博客

Python轴承故障诊断 (三)经验模态分解EMD-CSDN博客

Python轴承故障诊断 (四)基于EMD-CNN的故障分类-CSDN博客

Python轴承故障诊断 (五)基于EMD-LSTM的故障分类-CSDN博客

Python轴承故障诊断 (六)基于EMD-Transformer的故障分类-CSDN博客

Python轴承故障诊断 (七)基于EMD-CNN-LSTM的故障分类-CSDN博客

Python轴承故障诊断 (八)基于EMD-CNN-GRU并行模型的故障分类-CSDN博客

Python轴承故障诊断 (九)基于VMD+CNN-BiLSTM的故障分类-CSDN博客

Python轴承故障诊断 (十)基于VMD+CNN-Transfromer的故障分类-CSDN博客

基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的轴承故障识别模型-CSDN博客

基于FFT + CNN - Transformer 时域、频域特征融合的轴承故障识别模型-CSDN博客

Python轴承故障诊断 (11)基于VMD+CNN-BiGRU-Attenion的故障分类-CSDN博客

交叉注意力融合时域、频域特征的FFT + CNN -BiLSTM-CrossAttention轴承故障识别模型-CSDN博客

交叉注意力融合时域、频域特征的FFT + CNN-Transformer-CrossAttention轴承故障识别模型-CSDN博客

轴承故障诊断 (12)基于交叉注意力特征融合的VMD+CNN-BiLSTM-CrossAttention故障识别模型_基于残差混合域注意力cnn的轴承故障诊断及其时频域可解释性-CSDN博客

Python轴承故障诊断 (13)基于故障信号特征提取的超强机器学习识别模型-CSDN博客

Python轴承故障诊断 (14)高创新故障识别模型-CSDN博客

Python轴承故障诊断 (15)基于CNN-Transformer的一维故障信号识别模型-CSDN博客

Python轴承故障诊断 (16)高创新故障识别模型(二)-CSDN博客

轴承故障全家桶更新 | 基于时频图像的分类算法-CSDN博客

Python轴承故障诊断 (17)基于TCN-CNN并行的一维故障信号识别模型-CSDN博客

独家原创 | SCI 1区 高创新轴承故障诊断模型!-CSDN博客

基于 GADF+Swin-CNN-GAM 的高创新轴承故障诊断模型-CSDN博客

Python轴承故障诊断 (18)基于CNN-TCN-Attention的创新诊断模型-CSDN博客

注意力魔改 | 超强轴承故障诊断模型!-CSDN博客

轴承故障全家桶更新 | 基于VGG16的时频图像分类算法-CSDN博客

轴承故障全家桶更新 | CNN、LSTM、Transformer、TCN、串行、并行模型、时频图像、EMD分解等集合​都在这里-CSDN博客

Python轴承故障诊断 (19)基于Transformer-BiLSTM的创新诊断模型-CSDN博客

Python轴承故障诊断 (20)高创新故障识别模型(三)-CSDN博客

视觉顶会论文 | 基于Swin Transformer的轴承故障诊断-CSDN博客

Python轴承故障诊断 | 多尺度特征交叉注意力融合模型-CSDN博客

SHAP 模型可视化 + 参数搜索策略在轴承故障诊断中的应用-CSDN博客

速发论文 | 基于 2D-SWinTransformer+1D-CNN-SENet并行故障诊断模型-CSDN博客

注意:本模型 继续加入 轴承故障诊断---创新模型全家桶 ,之前购买的同学请及时更新下载!

模型简介:

环境:python 3.9 pytorch 1.8 以上

分类精度:训练集、验证集、测试集均为98%

全网最低价,创新 网络分类效果显著,模型能够充分提取轴承故障信号的空间和时序特征和频域特征,收敛速度快,性能优越, 精度高。 创新度也有!!! 高性价比、高质量代码,大家可以了解一下:(所有全家桶模型会不断加入新的模型进行更新!后续会逐渐提高价格,越早购买性价比越高!!!

基于VMD-CNN-BiTCN的轴承故障诊断创新模型:

1.创新点:

利用VMD将原始信号分解为多个模态分量,来提取信号的频域特征和时域特征;CNN 可以用于提取信号的局部空间特征并通过CNN卷积池化层降低信号序列长度,增加数据维度;BiTCN 是一种双向时序卷积网络,可以有效地捕获信号的时序信息。双向结构有助于模型捕获信号的动态特征;

2. 原理流程:

首先,使用 VMD 对原始轴承信号进行分解,得到多个模态分量;每个模态分量作为输入,经过 CNN 进行特征提取和抽象;CNN 提取的特征再经过 BiTCN 进行时序建模和特征融合;最终,利用融合后的特征进行轴承故障的诊断和分类;通过结合两种模型,创新模型可以在轴承故障诊断任务中取得更好的性能和效果,提高故障诊断的准确率和效率。

前言

本文基于凯斯西储大学(CWRU)轴承数据,先经过数据预处理进行数据集的制作和加载,最后通过Pytorch实现VMD-CNN-BiTCN模型对故障数据的分类。凯斯西储大学轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

1 轴承数据加载与预处理

1.1 导入数据

参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:

train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据

上图是数据的读取形式以及预处理思路

1.2 故障VMD分解可视化

第一步, 模态选取

根据不同K值条件下, 观察中心频率,选定K值;从K=4开始出现中心频率相近的模态,出现过分解,故模态数 K 选为4。

第二步,故障VMD分解可视化

1.3 故障数据的VMD分解预处理

2 基于Pytorch的VMD-CNN-BiTCN创新诊断模型

2.1 定义VMD-CNN-BiTCN分类网络模型

2.2 设置参数,训练模型

100个epoch,准确率98%,VMD-CNN-BiTCN网络分类效果显著,CNN-BiTCN模型能够充分提取轴承故障信号的多尺度特征,收敛速度快,性能特别优越,效果明显。

注意调整参数:

  • 可以适当增加CNN层数和每层维度数,微调学习率;

  • 微调BiTCN层数和每层通道数个数,增加更多的 epoch (注意防止过拟合)

  • 可以改变一维信号堆叠的形状(设置合适的长度和维度)

2.3 模型评估

准确率、精确率、召回率、F1 Score

故障十分类混淆矩阵:

3 代码、数据整理如下:

相关推荐
凌小添16 分钟前
Python入门教程丨2.3 流程控制、算法效率分析及优化
python·算法
fyhs18 分钟前
mayavi -> python 3D可视化工具Mayavi的安装
python·数据可视化·mayavi
wit_@19 分钟前
【深入解析】 RNN 算法:原理、应用与实现
python·rnn·深度学习·神经网络
像污秽一样23 分钟前
AI刷题-小R的随机播放顺序、不同整数的计数问题
开发语言·c++·算法
m0_7482546632 分钟前
Python中的简单爬虫
爬虫·python·信息可视化
懒大王爱吃狼35 分钟前
【数据分析与可视化】Python绘制数据地图-GeoPandas地图可视化
开发语言·python·学习·数据挖掘·数据分析·python基础·python学习
Channing Lewis1 小时前
python有goto语句吗
python
m0_748234081 小时前
差异基因富集分析(R语言——GO&KEGG&GSEA)
开发语言·golang·r语言
声声codeGrandMaster1 小时前
Scrapy中间件的使用
python·scrapy·中间件
银河金融数据库1 小时前
逐笔成交逐笔委托Level2高频数据下载和分析:20241230
数据库·python·金融·github