Kafka和NATS等消息队列系统如何保证精确一次Exactly-Once语义

Ensuring exactly-once delivery in a message queue system like Kafka or NATS is a challenging problem because it requires addressing multiple aspects: message delivery, acknowledgment, and duplication due to retries or failures. Here's how it can be achieved or approximated:

1. Idempotent Producers

  • Mechanism: The producer assigns a unique identifier (e.g., a sequence number or UUID) to each message it sends. The broker keeps track of these identifiers to ensure duplicate messages aren't stored multiple times.
  • Example in Kafka : Kafka provides idempotent producers. When enabled, the producer appends messages to a topic partition with a unique sequence number, ensuring duplicates caused by retries are discarded.

2. Transactional Messaging

  • Mechanism: Transactions are used to bundle message sends and acknowledgments. This ensures that messages are either fully committed or not at all.
  • Example in Kafka : Kafka's exactly-once semantics (EOS) allow producers to produce messages and consumers to commit offsets as a single atomic operation.
    The producer uses the transactional.id to track its state across retries and restarts.

3. Deduplication by Consumers

  • Mechanism: Consumers can implement deduplication logic based on a unique message identifier (such as a UUID or sequence number) included in the message.
  • Requirement: Consumers must have a way to maintain state about already processed message IDs (e.g., in a database or cache).
  • Example in Practice: Many message systems assume at-least-once delivery and delegate deduplication responsibility to the consumer.

4. Acknowledgment Mechanisms

  • Mechanism: Messages are delivered and acknowledged by consumers. If a consumer fails to acknowledge, the message may be retried, but careful design ensures duplicate deliveries are avoided.
  • Example in Kafka: Kafka consumers track offsets, and the system ensures that offsets are committed only when a message has been successfully processed.
  • Example in NATS: NATS JetStream uses acknowledgment modes to track the processing state of messages. It also supports durable subscriptions to avoid delivering the same message multiple times.

5. Partitioning and Ordering

  • Mechanism: By assigning messages to partitions and ensuring consumers process a single partition sequentially, systems can reduce the complexity of managing message ordering and deduplication.
  • Example in Kafka: Kafka partitions guarantee order within a partition, enabling deterministic message processing.

6. Storage Guarantees

  • Mechanism: Persistent storage (like Kafka's commit log) ensures that messages are reliably stored until acknowledged by consumers. This prevents loss or duplication due to transient failures.
  • Example: Kafka ensures durability with replication, and NATS JetStream provides persistence with disk-based storage.

Limitations

  • Performance Overhead: Achieving exactly-once semantics requires additional coordination (e.g., tracking offsets, deduplication), which can impact throughput and latency.
  • Infrastructure Complexity: Managing transactions and deduplication requires more infrastructure, such as stateful brokers or additional database interactions.

Summary

Both Kafka and NATS provide tools for exactly-once delivery or close approximations:

  • Kafka relies on idempotent producers , transactional messaging , and consumer offset management .

    Kafka实现原理详细介绍见文章:Kafka Transactions: Part 1: Exactly-Once Messaging

  • NATS JetStream focuses on durable storage , acknowledgment mechanisms , and consumer-driven deduplication.

The implementation depends on the system design, trade-offs between performance and reliability, and the application's tolerance for complexity.

相关推荐
狮歌~资深攻城狮2 小时前
TiDB出现后,大数据技术的未来方向
数据库·数据仓库·分布式·数据分析·tidb
狮歌~资深攻城狮2 小时前
TiDB 和信创:如何推动国产化数据库的发展?
数据库·数据仓库·分布式·数据分析·tidb
明达技术3 小时前
分布式 IO 模块与伺服电机:拉丝机高效生产的 “黄金搭档”
分布式
weisian1515 小时前
消息队列篇--原理篇--Pulsar(Namespace,BookKeeper,类似Kafka甚至更好的消息队列)
分布式·kafka
狮歌~资深攻城狮5 小时前
TiDB与Oracle:数据库之争,谁能更胜一筹?
数据库·数据仓库·分布式·数据分析·tidb
Cent'Anni9 小时前
集群、分布式及微服务间的区别与联系
java·分布式
m0_748254889 小时前
【VxLAN】二、VxLAN-EVPN分布式网关-ensp实验
分布式
明达技术9 小时前
科技护航:分布式 IO 模块与大型 PLC,稳筑地铁安全防线
分布式·科技
九河云9 小时前
分布式数据库中间件(DDM)的使用场景
数据库·分布式·中间件·华为云
m0_748234719 小时前
分布式多卡训练(DDP)踩坑
分布式