本篇文章从Source、Transformation(转换因子)、sink这三个地方进行讲解
Source:
- 创建DataStream
- 本地文件
- Socket
- Kafka
Transformation(转换因子):
- map
- FlatMap
- Filter
- KeyBy
- Reduce
- Union和connect
- Side Outputs
sink:
- print 打印
- writerAsText 以文本格式输出
- writeAsCsv 以csv格式输出
- 输出到MySQL
- 输出到kafka
- 自定义输出
先准备一个模板方便后续使用
java
#if (${PACKAGE_NAME} && ${PACKAGE_NAME} != "")package ${PACKAGE_NAME};#end
#parse("File Header.java")
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
/**
@基本功能:
@program:${PROJECT_NAME}
@author: ${USER}
@create:${YEAR}-${MONTH}-${DAY} ${HOUR}:${MINUTE}:${SECOND}
**/
public class ${NAME} {
public static void main(String[] args) throws Exception {
//1. env-准备环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
//2. source-加载数据
//3. transformation-数据处理转换
//4. sink-数据输出
//5. execute-执行
env.execute();
}
}
Source:
预定义source
创建DataStream(四种)
- 使用env.fromElements:类型要一致
- 使用env.fromcollections:支持多种collection的具体类型
- 使用env.generateSequence()方法创建基于Sequence的DataStream --已经废弃了
- 使用env.fromSequence()方法创建基于开始和结束的DataStream
java
package com.bigdata.source;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class _01YuDingYiSource {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 各种获取数据的Source
DataStreamSource<String> dataStreamSource = env.fromElements("hello world txt", "hello nihao kongniqiwa");
dataStreamSource.print();
// 演示一个错误的
//DataStreamSource<Object> dataStreamSource2 = env.fromElements("hello", 1,3.0f);
//dataStreamSource2.print();
DataStreamSource<Tuple2<String, Integer>> elements = env.fromElements(
Tuple2.of("张三", 18),
Tuple2.of("lisi", 18),
Tuple2.of("wangwu", 18)
);
elements.print();
// 有一个方法,可以直接将数组变为集合 复习一下数组和集合以及一些非常常见的API
String[] arr = {"hello","world"};
System.out.println(arr.length);
System.out.println(Arrays.toString(arr));
List<String> list = Arrays.asList(arr);
System.out.println(list);
env.fromElements(
Arrays.asList(arr),
Arrays.asList(arr),
Arrays.asList(arr)
).print();
// 第二种加载数据的方式
// Collection 的子接口只有 Set 和 List
ArrayList<String> list1 = new ArrayList<>();
list1.add("python");
list1.add("scala");
list1.add("java");
DataStreamSource<String> ds1 = env.fromCollection(list1);
DataStreamSource<String> ds2 = env.fromCollection(Arrays.asList(arr));
// 第三种
DataStreamSource<Long> ds3 = env.fromSequence(1, 100);
ds3.print();
// execute 下面的代码不运行,所以,这句话要放在最后。
env.execute("获取预定义的Source");
}
}
本地文件
java
File file = new File("datas/wc.txt");
File file2 = new File("./");
System.out.println(file.getAbsoluteFile());
System.out.println(file2.getAbsoluteFile());
DataStreamSource<String> ds1 = env.readTextFile("datas/wc.txt");
ds1.print();
// 还可以获取hdfs路径上的数据
DataStreamSource<String> ds2 = env.readTextFile("hdfs://bigdata01:9820/home/a.txt");
ds2.print();
Socket
linux(socket命令)
java
下载:yum install -y nc
nc -lk 8888 --向8888端口发送消息,这个命令先运行,如果先运行java程序,会报错!
如果端口被占用就换一个端口
本地(socket命令)
java
nc -lp 8888
或者 nc -l -p 8888
如果不是在exe端打开的用 -l -p 8888
java代码
java
DataStreamSource<String> lines = env.socketTextStream("localhost", 8888);
Word Count案例
java
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
public class SourceDemo02_Socket {
public static void main(String[] args) throws Exception {
//TODO 1.env-准备环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
//TODO 2.source-加载数据
DataStream<String> socketDS = env.socketTextStream("bigdata01", 8889);
//TODO 3.transformation-数据转换处理
//3.1对每一行数据进行分割并压扁
DataStream<String> wordsDS = socketDS.flatMap(new FlatMapFunction<String, String>() {
@Override
public void flatMap(String value, Collector<String> out) throws Exception {
String[] words = value.split(" ");
for (String word : words) {
out.collect(word);
}
}
});
//3.2每个单词记为<单词,1>
DataStream<Tuple2<String, Integer>> wordAndOneDS = wordsDS.map(new MapFunction<String, Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> map(String value) throws Exception {
return Tuple2.of(value, 1);
}
});
//3.3分组
KeyedStream<Tuple2<String, Integer>, String> keyedDS = wordAndOneDS.keyBy(new KeySelector<Tuple2<String, Integer>, String>() {
@Override
public String getKey(Tuple2<String, Integer> value) throws Exception {
return value.f0;
}
});
//3.4聚合
SingleOutputStreamOperator<Tuple2<String, Integer>> result = keyedDS.sum(1);
//TODO 4.sink-数据输出
result.print();
//TODO 5.execute-执行
env.execute();
}
}
JDBC
java
Connection connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/flink", "root", "root");
PreparedStatement preparedStatement = connection.prepareStatement("select monitor_id,speed_limit from t_monitor_info group by monitor_id, speed_limit");
ResultSet resultSet = preparedStatement.executeQuery();
ArrayList<Tuple2<String,Double>> arr = new ArrayList<>();
while (resultSet.next()){
String monitor_id = resultSet.getString("monitor_id");
Double speed_limit = resultSet.getDouble("speed_limit");
Tuple2 tuple2 = new Tuple2(monitor_id, speed_limit);
arr.add(tuple2);
}
Kafka
添加依赖
XML
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
java
package com.bigdata.day02;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import java.util.Properties;
public class KafkaSource {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "bigdata01:9092");
properties.setProperty("group.id", "g1");
FlinkKafkaConsumer<String> kafkaSource = new FlinkKafkaConsumer<String>("topic1",new SimpleStringSchema(),properties);
DataStreamSource<String> dataStreamSource = env.addSource(kafkaSource);
// 以下代码跟flink消费kakfa数据没关系,仅仅是将需求搞的复杂一点而已
// 返回true 的数据就保留下来,返回false 直接丢弃
dataStreamSource.filter(new FilterFunction<String>() {
@Override
public boolean filter(String word) throws Exception {
// 查看单词中是否包含success 字样
return word.contains("success");
}
}).print();
env.execute();
}
}
自定义source
SourceFunction:非并行数据源(并行度只能=1) --接口
RichSourceFunction:多功能非并行数据源(并行度只能=1) --类
ParallelSourceFunction:并行数据源(并行度能够>=1) --接口
RichParallelSourceFunction:多功能并行数据源(并行度能够>=1) --类 【建议使用的】
java
package com.bigdata.day02;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.ParallelSourceFunction;
import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;
import org.apache.flink.streaming.api.functions.source.RichSourceFunction;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import java.util.Random;
import java.util.UUID;
/**
* 需求: 每隔1秒随机生成一条订单信息(订单ID、用户ID、订单金额、时间戳)
* 要求:
* - 随机生成订单ID(UUID)
* - 随机生成用户ID(0-2)
* - 随机生成订单金额(0-100)
* - 时间戳为当前系统时间
*/
@Data // set get toString
@AllArgsConstructor
@NoArgsConstructor
class OrderInfo{
private String orderId;
private int uid;
private int money;
private long timeStamp;
}
// class MySource extends RichSourceFunction<OrderInfo> {
//class MySource extends RichParallelSourceFunction<OrderInfo> {
class MySource implements SourceFunction<OrderInfo> {
boolean flag = true;
@Override
public void run(SourceContext ctx) throws Exception {
// 源源不断的产生数据
Random random = new Random();
while(flag){
OrderInfo orderInfo = new OrderInfo();
orderInfo.setOrderId(UUID.randomUUID().toString());
orderInfo.setUid(random.nextInt(3));
orderInfo.setMoney(random.nextInt(101));
orderInfo.setTimeStamp(System.currentTimeMillis());
ctx.collect(orderInfo);
Thread.sleep(1000);// 间隔1s
}
}
// source 停止之前需要干点啥
@Override
public void cancel() {
flag = false;
}
}
public class CustomSource {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(2);
// 将自定义的数据源放入到env中
DataStreamSource dataStreamSource = env.addSource(new MySource())/*.setParallelism(1)*/;
System.out.println(dataStreamSource.getParallelism());
dataStreamSource.print();
env.execute();
}
}
如果代码换成ParallelSourceFunction,每次生成12个数据,假如是12核数的话(有多少核就生成多少个数据)。
Rich 类型的Source可以比非Rich的多出有:
open方法,实例化的时候会执行一次,多个并行度会执行多次的哦(因为是多个实例了)
close方法,销毁实例的时候会执行一次,多个并行度会执行多次的哦
getRuntimeContext 方法可以获得当前的Runtime对象(底层API)
java
rich模板
/**
* 自定义一个RichParallelSourceFunction的实现
*/
public class CustomerRichSourceWithParallelDemo {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource<String> mySource = env.addSource(new MySource()).setParallelism(6);
mySource.print();
env.execute();
}
/*
Rich 类型的Source可以比非Rich的多出有:
- open方法,实例化的时候会执行一次,多个并行度会执行多次的哦(因为是多个实例了)
- close方法,销毁实例的时候会执行一次,多个并行度会执行多次的哦
- getRuntime方法可以获得当前的Runtime对象(底层API)
*/
public static class MySource extends RichParallelSourceFunction<String> {
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
System.out.println("open......");
}
@Override
public void close() throws Exception {
super.close();
System.out.println("close......");
}
@Override
public void run(SourceContext<String> ctx) throws Exception {
ctx.collect(UUID.randomUUID().toString());
}
@Override
public void cancel() {}
}
}
Transformation(转换因子):
map算子(一变多)
java
package com.bigdata.day02;
import lombok.AllArgsConstructor;
import lombok.Data;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import java.text.SimpleDateFormat;
import java.util.Date;
/**
* @基本功能:
* @program:FlinkDemo
* @author: 闫哥
* @create:2024-05-13 11:40:37
**/
@Data
@AllArgsConstructor
class LogBean{
private String ip; // 访问ip
private int userId; // 用户id
private long timestamp; // 访问时间戳
private String method; // 访问方法
private String path; // 访问路径
}
public class Demo04 {
// 将数据转换为javaBean
public static void main(String[] args) throws Exception {
//1. env-准备环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
//2. source-加载数据
DataStreamSource<String> streamSource = env.readTextFile("datas/a.log");
//3. transformation-数据处理转换
SingleOutputStreamOperator<LogBean> map = streamSource.map(new MapFunction<String, LogBean>() {
@Override
public LogBean map(String line) throws Exception {
String[] arr = line.split("\\s+");
//时间戳转换 17/05/2015:10:06:53
String time = arr[2];
SimpleDateFormat format = new SimpleDateFormat("dd/MM/yyyy:HH:mm:ss");
Date date = format.parse(time);
long timeStamp = date.getTime();
return new LogBean(arr[0],Integer.parseInt(arr[1]),timeStamp,arr[3],arr[4]);
}
});
//4. sink-数据输出
map.print();
//5. execute-执行
env.execute();
}
}
FlatMap算子(类似于炸裂函数)
数据
张三,苹果手机,联想电脑,华为平板
李四,华为手机,苹果电脑,小米平板
java
package com.bigdata.day03;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
/**
* @基本功能:
* @program:FlinkDemo
* @author: 闫哥
* @create:2023-11-21 09:51:59
**/
public class FlatMapDemo {
public static void main(String[] args) throws Exception {
//1. env-准备环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
//2. source-加载数据
//2. source-加载数据
DataStream<String> fileStream = env.readTextFile("F:\\BD230801\\FlinkDemo\\datas\\flatmap.log");
//3. transformation-数据处理转换
DataStream<String> flatMapStream = fileStream.flatMap(new FlatMapFunction<String, String>() {
@Override
public void flatMap(String line, Collector<String> collector) throws Exception {
//张三,苹果手机,联想电脑,华为平板
String[] arr = line.split(",");
String name = arr[0];
for (int i = 1; i < arr.length; i++) {
String goods = arr[i];
collector.collect(name+"有"+goods);
}
}
});
//4. sink-数据输出
flatMapStream.print();
//5. execute-执行
env.execute();
}
}
Filter(过滤)
java
package com.bigdata.day03;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.commons.lang3.time.DateUtils;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import java.util.Date;
/**
* @基本功能:
* @program:FlinkDemo
* @author: zxx
* @create:2023-11-21 09:10:30
**/
public class FilterDemo {
@Data
@AllArgsConstructor
@NoArgsConstructor
static class LogBean{
String ip; // 访问ip
int userId; // 用户id
long timestamp; // 访问时间戳
String method; // 访问方法
String path; // 访问路径
}
public static void main(String[] args) throws Exception {
//1. env-准备环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
//2. source-加载数据
DataStream<String> fileStream = env.readTextFile("F:\\BD230801\\FlinkDemo\\datas\\a.log");
//3. transformation-数据处理转换
// 读取第一题中 a.log文件中的访问日志数据,过滤出来以下访问IP是83.149.9.216的访问日志
DataStream<String> filterStream = fileStream.filter(new FilterFunction<String>() {
@Override
public boolean filter(String line) throws Exception {
String ip = line.split(" ")[0];
return ip.equals("83.149.9.216");
}
});
//4. sink-数据输出
filterStream.print();
//5. execute-执行
env.execute();
}
}
KeyBy(分组)
元组
java
//用字段位置
wordAndOne.keyBy(0, 1);
//用KeySelector
wordAndOne.keyBy(new KeySelector<Tuple2<String, Integer>, Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> getKey(Tuple2<String, Integer> value) throws Exception {
return Tuple2.of(value.f0, value.f1);
}
});
POJO (Plain Old Java Object):普通Java对象
java
public class PeopleCount {
private String province;
private String city;
private Integer counts;
public PeopleCount() {
}
//省略其他代码。。。
}
多个字段keyBy
java
source.keyBy(new KeySelector<PeopleCount, Tuple2<String, String>>() {
@Override
public Tuple2<String, String> getKey(PeopleCount value) throws Exception {
return Tuple2.of(value.getProvince(), value.getCity());
}
});
Reduce --sum的底层是reduce(聚合)
java
// [ ("10.0.0.1",1),("10.0.0.1",1),("10.0.0.1",1) ]
keyByStream.reduce(new ReduceFunction<Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> reduce(Tuple2<String, Integer> t1, Tuple2<String, Integer> t2) throws Exception {
// t1 => ("10.0.0.1",10)
// t2 => ("10.0.0.1",1)
return Tuple2.of(t1.f0, t1.f1 + t2.f1);
}
}).print();
union和connect-合并和连接
Union
union可以合并多个同类型的流
将多个DataStream 合并成一个DataStream
connect
connect可以连接2个不同类型的流(最后需要处理后再输出)
DataStream,DataStream → ConnectedStreams:连接两个保持他们类型的数据流,两个数据流被 Connect 之后,只是被放在了一个同一个流中,内部依然保持各自的数据和形式不发生任何变化【一国两制】,两个流相互独立, 作为对比Union后是真的变成一个流了。
和union类似,但是connect只能连接两个流,两个流之间的数据类型可以 不 同,对两个流的数据可以分别 应用不同的处理逻辑.
java
package com.bigdata.day03;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.datastream.ConnectedStreams;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoMapFunction;
/**
* @基本功能:
* @program:FlinkDemo
* @author: zxx
* @create:2023-11-21 11:40:12
**/
public class UnionConnectDemo {
public static void main(String[] args) throws Exception {
//1. env-准备环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
//2. source-加载数据
DataStreamSource<String> stream1 = env.fromElements("hello", "nihao", "吃甘蔗的人");
DataStreamSource<String> stream2 = env.fromElements("hello", "kong ni qi wa", "看电子书的人");
DataStream<String> unionStream = stream1.union(stream2);
unionStream.print();
DataStream<Long> stream3 = env.fromSequence(1, 10);
// stream1.union(stream3); 报错
//3. transformation-数据处理转换
ConnectedStreams<String, Long> connectStream = stream1.connect(stream3);
// 此时你想使用这个流,需要各自重新处理
// 处理完之后的数据类型必须相同
DataStream<String> mapStream = connectStream.map(new CoMapFunction<String, Long, String>() {
// string 类型的数据
@Override
public String map1(String value) throws Exception {
return value;
}
// 这个处理long 类型的数据
@Override
public String map2(Long value) throws Exception {
return Long.toString(value);
}
});
//4. sink-数据输出
mapStream.print();
//5. execute-执行
env.execute();
}
}
java
package com.bigdata.transforma;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.datastream.ConnectedStreams;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoProcessFunction;
import org.apache.flink.util.Collector;
/**
* @基本功能:
* @program:FlinkDemo
* @author: zxx
* @create:2024-11-22 10:50:13
**/
public class _08_两个流join {
public static void main(String[] args) throws Exception {
//1. env-准备环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
DataStreamSource<String> ds1 = env.fromElements("bigdata", "spark", "flink");
DataStreamSource<String> ds2 = env.fromElements("python", "scala", "java");
DataStream<String> ds3 = ds1.union(ds2);
ds3.print();
// 接着演示 connect
DataStreamSource<Long> ds4 = env.fromSequence(1, 10);
ConnectedStreams<String, Long> ds5 = ds1.connect(ds4);
ds5.process(new CoProcessFunction<String, Long, String>() {
@Override
public void processElement1(String value, CoProcessFunction<String, Long, String>.Context ctx, Collector<String> out) throws Exception {
System.out.println("String流:"+value);
out.collect(value);
}
@Override
public void processElement2(Long value, CoProcessFunction<String, Long, String>.Context ctx, Collector<String> out) throws Exception {
System.out.println("Long流:"+value);
out.collect(String.valueOf(value));
}
}).print("合并后的打印:");
//2. source-加载数据
//3. transformation-数据处理转换
//4. sink-数据输出
//5. execute-执行
env.execute();
}
}
Side Outputs侧道输出(侧输出流) --可以分流
举例说明:对流中的数据按照奇数和偶数进行分流,并获取分流后的数据
java
package com.bigdata.day02;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.util.Collector;
import org.apache.flink.util.OutputTag;
/**
* @基本功能:
* @program:FlinkDemo
* @author: zxx
* @create:2024-05-13 16:19:56
**/
public class Demo11 {
public static void main(String[] args) throws Exception {
//1. env-准备环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
// 侧道输出流
DataStreamSource<Long> streamSource = env.fromSequence(0, 100);
// 定义两个标签
OutputTag<Long> tag_even = new OutputTag<Long>("偶数", TypeInformation.of(Long.class));
OutputTag<Long> tag_odd = new OutputTag<Long>("奇数", TypeInformation.of(Long.class));
//2. source-加载数据
SingleOutputStreamOperator<Long> process = streamSource.process(new ProcessFunction<Long, Long>() {
@Override
public void processElement(Long value, ProcessFunction<Long, Long>.Context ctx, Collector<Long> out) throws Exception {
// value 代表每一个数据
if (value % 2 == 0) {
ctx.output(tag_even, value);
} else {
ctx.output(tag_odd, value);
}
}
});
// 从数据集中获取奇数的所有数据
DataStream<Long> sideOutput = process.getSideOutput(tag_odd);
sideOutput.print("奇数:");
// 获取所有偶数数据
DataStream<Long> sideOutput2 = process.getSideOutput(tag_even);
sideOutput2.print("偶数:");
//3. transformation-数据处理转换
//4. sink-数据输出
//5. execute-执行
env.execute();
}
}
sink:
print 打印
writerAsText 以文本格式输出
java
dataStreamSource.writeAsText("F:\\BD230801\\FlinkDemo\\datas\\result", FileSystem.WriteMode.OVERWRITE);
writerAsText 以文本格式输出
java
DataStreamSource<Tuple2<String, Integer>> streamSource = env.fromElements(
Tuple2.of("篮球", 1),
Tuple2.of("篮球", 2),
Tuple2.of("篮球", 3),
Tuple2.of("足球", 3),
Tuple2.of("足球", 2),
Tuple2.of("足球", 3)
);
// writeAsCsv 只能保存 tuple类型的DataStream流,因为如果不是多列的话,没必要使用什么分隔符
streamSource.writeAsCsv("datas/csv", FileSystem.WriteMode.OVERWRITE).setParallelism(1);
输出到MySQL
java
JdbcConnectionOptions jdbcConnectionOptions = new JdbcConnectionOptions.JdbcConnectionOptionsBuilder().withDriverName("com.mysql.cj.jdbc.Driver")
.withUrl("jdbc:mysql://localhost:3306/zuoye")
.withUsername("root").withPassword("123456").build();
studentDataStreamSource.addSink(JdbcSink.sink(
"insert into stu values(?,?,?)",
new JdbcStatementBuilder<Student>() {
@Override
public void accept(PreparedStatement preparedStatement, Student student) throws SQLException {
preparedStatement.setInt(1,student.getId());
preparedStatement.setString(2,student.getName());
preparedStatement.setInt(3,student.getAge());
}
},jdbcConnectionOptions
));
输出到kafka
java
FlinkKafkaProducer kafkaProducer = new FlinkKafkaProducer<String>("topic2",new SimpleStringSchema(),properties);
filterStream.addSink(kafkaProducer);
自定义Sink--模拟jdbcSink的实现
java
package com.bigdata.day03;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.connector.jdbc.JdbcConnectionOptions;
import org.apache.flink.connector.jdbc.JdbcExecutionOptions;
import org.apache.flink.connector.jdbc.JdbcSink;
import org.apache.flink.connector.jdbc.JdbcStatementBuilder;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.SQLException;
/**
* @基本功能:
* @program:FlinkDemo
* @author: zxx
* @create:2023-11-21 16:08:04
**/
public class CustomJdbcSinkDemo {
@Data
@AllArgsConstructor
@NoArgsConstructor
static class Student{
private int id;
private String name;
private int age;
}
static class MyJdbcSink extends RichSinkFunction<Student> {
Connection conn =null;
PreparedStatement ps = null;
@Override
public void open(Configuration parameters) throws Exception {
// 这个里面编写连接数据库的代码
Class.forName("com.mysql.jdbc.Driver");
conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/test1", "root", "123456");
ps = conn.prepareStatement("INSERT INTO `student` (`id`, `name`, `age`) VALUES (null, ?, ?)");
}
@Override
public void close() throws Exception {
// 关闭数据库的代码
ps.close();
conn.close();
}
@Override
public void invoke(Student student, Context context) throws Exception {
// 将数据插入到数据库中
ps.setString(1,student.getName());
ps.setInt(2,student.getAge());
ps.execute();
}
}
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource<Student> studentStream = env.fromElements(new Student(1, "马斯克", 51));
studentStream.addSink(new MyJdbcSink());
env.execute();
}
}