【大数据学习 | Spark-SQL】定义UDF和DUAF,UDTF函数

1. UDF函数(用户自定义函数)

一般指的是用户自己定义的单行函数。一进一出,函数接受的是一行中的一个或者多个字段值,返回一个值。比如MySQL中的,日期相关的dateDiff函数,字符串相关的substring函数。

先准备数据:

1.1 导入必要的包

首先,确保导入必要的Spark包:

Scala 复制代码
import org.apache.spark.sql.SparkSession

1.2 创建SparkSession

创建一个SparkSession对象,这是与Spark交互的入口。

1.3 定义UDF并注册到SparkSQL

定义一个Scala函数,并将其注册为UDF。示例

1.4 使用UDF在SQL查询中:

调用udf的register方法,第一个参数是udf函数的函数名,第二个参数是要注册为UDF的函数。

Scala 复制代码
session.udf.register("all_income",(sal:Int,bonus:Int)=>{
      sal*12 + bonus
    })

1.5 代码:

尽量使用SparkSQL的sql形式的写法,api写法太麻烦了。

Scala 复制代码
object TestUDF{
  def main(args: Array[String]): Unit = {
    val session = SparkSession.builder().master("local[*]").appName("testUDF").getOrCreate()
    import session.implicits._
    val df = session.sparkContext.textFile("D:\\software\\Spark\\SparkProgram1\\atguigu-classes\\data\\a.txt")
      .map(t => {
        val strs = t.split(" ")
        (strs(0), strs(1), strs(2).toInt, strs(3).toInt)
      }).toDF("id", "name", "salary", "bonus")

    session.udf.register("all_income",(sal:Int,bonus:Int)=>{
      sal*12 + bonus
    })

    import org.apache.spark.sql.functions
//    df.withColumn("all",functions.callUDF("all_income",$"salary",$"bonus"))
//      .select("id","name","all")
//      .show()
        df.createTempView("salary")
        session.sql(
          """
            |select id,name,all_income(salary,bonus) all from salary
            |""".stripMargin)
          .show()
  }
}

输出:

2. UDAF(用户自定义的聚合函数)

指的是用户自定义的聚合函数,多进一出,比如MySQL中的,count函数,avg函数。

以学生信息为主进行统计,所有人员的年龄的总和

或者每个性别的年龄的平均值

计算所有人的年龄之和:

Scala 复制代码
package com.atguigu.bigdata.test

import org.apache.spark.sql.{Encoder, Encoders, SparkSession, functions}
import org.apache.spark.sql.expressions.Aggregator

/**
 * ClassName : TestUDAF
 * Package : com.atguigu.bigdata.test
 * Description
 *
 * @Author HeXua
 * @Create 2024/11/29 19:09
 *         Version 1.0
 */
object TestUDAF {
  def main(args: Array[String]): Unit = {
    val session = SparkSession.builder().appName("test udaf").master("local[*]").getOrCreate()
    import session.implicits._
    val df = session.sparkContext.textFile("D:\\software\\Spark\\SparkProgram1\\atguigu-classes\\data\\a.txt")
      .map(t => {
        val strs = t.split(" ")
        (strs(0), strs(1), strs(2).toInt, strs(3))
      }).toDF("id", "name", "age", "gender")
    import org.apache.spark.sql.functions._
    // 注册udaf函数
    session.udf.register("mysum",udaf(new MySum))

    df.createTempView("student")
    session.sql(
      """
        |select mysum(age) from student
        |""".stripMargin)
      .show()
  }
}
// udaf的类继承Aggregator抽象类
class MySum extends Aggregator[Int,Int,Int]{
  //初始化
  def zero: Int = 0
  //聚合逻辑
  def reduce(b: Int, a: Int): Int = a+b
  //整体聚合
  def merge(b1: Int, b2: Int): Int = b1+b2
  //最终返回值
  def finish(reduction: Int): Int = reduction
  //累加值的类型
  def bufferEncoder: Encoder[Int] = Encoders.scalaInt
  //输出结果的类型
  def outputEncoder: Encoder[Int] = Encoders.scalaInt
}

定义用户自定义聚合函数时,继承Aggregator类需要指定三个泛型参数。这三个泛型参数分别代表不同的概念。

泛型参数解释:

  1. 输入类型(IN)

这是聚合函数的输入类型,即每次调用reduce方法时传入的单个元素的类型。例如你要计算一组整数的平均值,输入类型就是int。

  1. 缓冲区类型(BUFFER)

这是聚合函数的中间状态类型,也称为缓冲区类型。

例如你要计算一组整数的平均值,缓冲区可能包含两个字段:总和和计数,因为iBUF可能是一个元组。

  1. 输出类型(OUT)

这是聚合函数的最终输出类型,即finish方法返回的类型。例如你要计算平均值,最终输出类型是Double。

方法解释:

zero:初始化缓冲区的值,对于平均值计算,初始化和计数都是0。

reduce:更新缓冲区,每次传入一个新的输入值时,更新总和和计数。

finish:计算最终结果,根据缓冲区中的总和和计数,计算平均值。

bufferEncoder:定义缓冲区类型的编码器,用于序列化和反序列化缓冲区。

outputEncoder:定义最终输出类型的编码器,用于序列化和反序列化输出结果。

计算每个性别的年龄的平均值:

Scala 复制代码
case class AggragateVo(var cnt:Int,var sum:Int)
object MyAvg extends Aggregator[Int,AggragateVo,Double]{
  override def zero: AggragateVo = AggragateVo(0,0)

  override def reduce(b: AggragateVo, a: Int): AggragateVo = {
    b.cnt += 1
    b.sum += a
    b
  }

  override def merge(b1: AggragateVo, b2: AggragateVo): AggragateVo = {
    b1.cnt += b2.cnt
    b1.sum += b2.sum
    b1
  }

  override def finish(reduction: AggragateVo): Double = {
    reduction.sum.toDouble /reduction.cnt
  }

  override def bufferEncoder: Encoder[AggragateVo] = Encoders.product

  override def outputEncoder: Encoder[Double] = Encoders.scalaDouble
}

3. UDTF(用户自定义炸裂函数)

拆分函数,进入的是一行内容出现的结果是多行内容。

spark中并不直接支持UDTF函数。但可以使用hive中的炸裂函数达到效果。

Scala 复制代码
import org.apache.spark.sql.SparkSession

object TestUDTF {
  def main(args: Array[String]): Unit = {
    val session = SparkSession.builder().appName("test udtf").master("local[*]").getOrCreate()
    import session.implicits._
    val df = session.sparkContext.textFile("file:///headless/workspace/spark/data/m.txt")
      .map(t => {
        val strs = t.split(",")
        (strs(0), strs(1), strs(2))
      }).toDF("id", "name", "actors")
    //explode map array
    df.createTempView("movies")
    session.sql(
      """
        |select id,name,actor  from movies lateral view explode(split(actors,'\\|')) t as actor
        |""".stripMargin)
      .createTempView("movies1")

    session.sql(
      """
        |select count(1),actor from movies1 group by actor
        |""".stripMargin)
      .show()

  }
}
相关推荐
程序边界1 分钟前
从 Oracle 到 KingbaseES:企业信创改造的“抄作业”模板,直接套用!
数据库·oracle
时序数据说1 小时前
IoTDB如何解决海量数据存储难题?
大数据·数据库·物联网·时序数据库·iotdb
ManageEngineITSM1 小时前
云原生环境下的ITSM新趋势:从传统运维到智能化服务管理
大数据·运维·人工智能·云原生·itsm·工单系统
As33100102 小时前
Manus AI 与多语言手写识别技术全解析
大数据·网络·人工智能
我要学习别拦我~3 小时前
Kaggle项目:一次 Uber 出行数据分析的完整思路
大数据·经验分享·数据分析
一枚小小程序员哈3 小时前
大数据、hadoop、爬虫、spark项目开发设计之基于数据挖掘的交通流量分析研究
大数据·hadoop·爬虫
TDengine (老段)3 小时前
TDengine IDMP 运维指南(管理策略)
大数据·数据库·物联网·ai·时序数据库·tdengine·涛思数据
数据智能老司机6 小时前
Snowflake 快速入门——使用 Snowpipe 与动态表实现持续数据加载
大数据·数据分析·saas
数据智能老司机6 小时前
Snowflake 快速入门——Snowflake 管理与 RBAC
大数据·数据分析·saas
数据智能老司机6 小时前
Snowflake 快速入门——快速上手云分析
大数据·数据分析·saas