<项目代码>YOLOv8 红绿灯识别<目标检测>

YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。

1.数据集介绍

数据集详情可以参考博主写的博客

<数据集>红绿灯识别数据集<目标检测>https://blog.csdn.net/qq_53332949/article/details/141197385

数据集下载链接:

点击下载https://download.csdn.net/download/qq_53332949/89715882?spm=1001.2101.3001.9500

2.YOLOv8模型结构

YOLOv8的结构主要分为三部分:Backbone、Neck和Head。

- Backbone
  • 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
  • 它能够有效地捕获不同尺度和不同特征层次的信息。
- Neck
  • 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
- Head
  • 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
  • YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。

YOLOv8模型的整体结构如下图所示:

3.模型训练结果

YOLOv8在训练结束后,可以在**runs**目录下找到训练过程及结果文件,如下图所示:

3.1 map@50指标

3.2 P_curve.png

3.3 R_curve.png

3.4 results.png

3.5 F1_curve

3.6 confusion_matrix

3.7 confusion_matrix_normalized

3.8 验证 batch

标签:

预测结果:

3.9 识别效果图

相关推荐
苦学LCP的小猪5 分钟前
OpenCV图像基本操作
opencv·计算机视觉
量子-Alex6 分钟前
【目标检测】【PANet】Path Aggregation Network for Instance Segmentation
人工智能·目标检测·计算机视觉
lihuayong8 分钟前
计算机视觉:经典数据格式(VOC、YOLO、COCO)解析与转换(附代码)
人工智能·yolo·目标检测·计算机视觉·目标跟踪·coco·数据标注
thinkMoreAndDoMore13 分钟前
深度学习(3)-TensorFlow入门(常数张量和变量)
开发语言·人工智能·python
神舟之光15 分钟前
动手学深度学习2025.2.23-预备知识之-线性代数
人工智能·深度学习·线性代数
wapicn9927 分钟前
‌挖数据平台对接DeepSeek推出一键云端部署功能:API接口驱动金融、汽车等行业智能化升级
java·人工智能·python·金融·汽车·php
不爱学习的YY酱35 分钟前
MusicGPT的本地化部署与远程调用:让你的Windows电脑成为AI音乐工作站
人工智能·windows
kakaZhui37 分钟前
【多模态大模型】端侧语音大模型minicpm-o:手机上的 GPT-4o 级多模态大模型
人工智能·chatgpt·aigc·llama
艾思科蓝 AiScholar42 分钟前
【SPIE出版,见刊快速,EI检索稳定,浙江水利水电学院主办】2025年物理学与量子计算国际学术会议(ICPQC 2025)
图像处理·人工智能·信息可视化·自然语言处理·数据分析·力扣·量子计算
liruiqiang051 小时前
机器学习 - 衡量模型的特性
人工智能·机器学习