机器学习:机器学习项目的完整周期

建立一个有价值的机器学习系统时,需要考虑和计划哪些步骤?

以语音识别为例演示机器学习项目的全周期:机器学习项目的第一步是对项目进行范围划分 ,即决定什么是项目和你想做什么,然后是收集数据 ,所以决定需要什么数据来训练你的机器学习系统,并为数据获取标签,这就是数据收集,在进行初始数据收集后,就可以开始训练模型 ,所以在这里,将训练一个语音识别系统,并进行错误分析 ,并迭代改进模型 ,进行误差分析或进行偏差方差分析,决定是否要收集更多的数据或者收集更多特定类型的数据,错误分析是为了提高学习算法的性能,重复这个过程,从训练模型到误差分析。收集更多数据,直到最终认为模型足够好,然后在生产环境中部署,让用户可以使用它,当部署 一个系统时,还希望确保继续监视系统的性能,并维护系统以防止性能变差,使它的性能恢复,有时并不像希望的那样有效,所以再次进行训练再次改进它,甚至获取更多的数据。

在训练了一个高性能的机器学习模型后,部署模型的一种常见方法是使用机器学习模型,在一个服务器中实现,将调用一个推理服务器,它的工作是把你的机器学习模型(你训练的模型)做出预测,一个推理服务器,它让模型根据输入反复做出预测,所以这是一个常见的模式,取决于实现的应用程序。需要根据所需的应用规模来决定使用什么样的软件工程,推理服务器能够做出可靠有效的预测,对于某些应用程序,部署过程可能需要一定数量的软件工程,如果只是在笔记本电脑或者一两个服务上运行它,也许不需要太多的软件工程,机器学习中有一个不断增长的领域叫做MLOPS,这代表机器学习操作,这是指构建、部署和维护机器学习系统,做所有这些事情,以确保机器学习模型是可靠的,并有良好的损耗监测,然后对模型进行适当的更新。

相关推荐
mit6.82431 分钟前
[AI React Web] 包与依赖管理 | `axios`库 | `framer-motion`库
前端·人工智能·react.js
小阿鑫1 小时前
不要太信任Cursor,这位网友被删库了。。。
人工智能·aigc·cursor·部署mcp
说私域1 小时前
基于定制开发开源 AI 智能名片 S2B2C 商城小程序的热点与人工下发策略研究
人工智能·小程序
Moshow郑锴1 小时前
机器学习相关算法:回溯算法 贪心算法 回归算法(线性回归) 算法超参数 多项式时间 朴素贝叶斯分类算法
算法·机器学习·回归
GoGeekBaird2 小时前
GoHumanLoopHub开源上线,开启Agent人际协作新方式
人工智能·后端·github
Jinkxs2 小时前
测试工程师的AI转型指南:从工具使用到测试策略重构
人工智能·重构
别惹CC3 小时前
Spring AI 进阶之路01:三步将 AI 整合进 Spring Boot
人工智能·spring boot·spring
stbomei5 小时前
当 AI 开始 “理解” 情感:情感计算技术正在改写人机交互规则
人工智能·人机交互
Moshow郑锴10 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-202510 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn