机器学习:机器学习项目的完整周期

建立一个有价值的机器学习系统时,需要考虑和计划哪些步骤?

以语音识别为例演示机器学习项目的全周期:机器学习项目的第一步是对项目进行范围划分 ,即决定什么是项目和你想做什么,然后是收集数据 ,所以决定需要什么数据来训练你的机器学习系统,并为数据获取标签,这就是数据收集,在进行初始数据收集后,就可以开始训练模型 ,所以在这里,将训练一个语音识别系统,并进行错误分析 ,并迭代改进模型 ,进行误差分析或进行偏差方差分析,决定是否要收集更多的数据或者收集更多特定类型的数据,错误分析是为了提高学习算法的性能,重复这个过程,从训练模型到误差分析。收集更多数据,直到最终认为模型足够好,然后在生产环境中部署,让用户可以使用它,当部署 一个系统时,还希望确保继续监视系统的性能,并维护系统以防止性能变差,使它的性能恢复,有时并不像希望的那样有效,所以再次进行训练再次改进它,甚至获取更多的数据。

在训练了一个高性能的机器学习模型后,部署模型的一种常见方法是使用机器学习模型,在一个服务器中实现,将调用一个推理服务器,它的工作是把你的机器学习模型(你训练的模型)做出预测,一个推理服务器,它让模型根据输入反复做出预测,所以这是一个常见的模式,取决于实现的应用程序。需要根据所需的应用规模来决定使用什么样的软件工程,推理服务器能够做出可靠有效的预测,对于某些应用程序,部署过程可能需要一定数量的软件工程,如果只是在笔记本电脑或者一两个服务上运行它,也许不需要太多的软件工程,机器学习中有一个不断增长的领域叫做MLOPS,这代表机器学习操作,这是指构建、部署和维护机器学习系统,做所有这些事情,以确保机器学习模型是可靠的,并有良好的损耗监测,然后对模型进行适当的更新。

相关推荐
亚马逊云开发者8 分钟前
使用Amazon Q Developer CLI快速构建市场分析智能体
人工智能
Coding茶水间13 分钟前
基于深度学习的非机动车头盔检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
Rose sait23 分钟前
【环境配置】Linux配置虚拟环境pytorch
linux·人工智能·python
福客AI智能客服28 分钟前
从被动响应到主动赋能:家具行业客服机器人的革新路径
大数据·人工智能
司南OpenCompass44 分钟前
衡量AI真实科研能力!司南科学智能评测上线
人工智能·多模态模型·大模型评测·司南评测
罗宇超MS1 小时前
如何看待企业自建AI知识库?
人工智能·alm
土星云SaturnCloud1 小时前
液冷“内卷”:在局部优化与系统重构之间,寻找第三条路
服务器·人工智能·ai·计算机外设
智界前沿1 小时前
集之互动AI创意视频解决方案:商业级可控,让品牌创意从“灵感”直达“落地”
人工智能·aigc
baby_hua1 小时前
20251024_PyTorch深度学习快速入门教程
人工智能·pytorch·深度学习