基于BM1684的AI边缘服务器-模型转换,大模型一体机(二)

目标追踪

注:所有模型转换都是在docker环境中的

先进入docker

这里我们是要在docker环境里编译的,所以先进入docker

复制代码
:~/tpu-nntc# docker run -v $PWD/:/workspace  -it sophgo/tpuc_dev:latest

初始化环境

复制代码
root@2bb02a2e27d5:/workspace/tpu-nntc# source ./scripts/envsetup.sh

docker里安装编译器

复制代码
root@2bb02a2e27d5:/workspace/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv/build# sudo apt-get install  gcc-aarch64-linux-gnu g++-aarch64-linux-gnu libeigen3-dev

本C++例程依赖Eigen,您需要在编译c++程序的机器上运行如下命令安装:

复制代码
sudo apt install libeigen3-dev

先下载相关文件,主要是追踪的测试视频,测试图片,目标追踪的权重,目标检测的权重

复制代码
# 安装unzip,若已安装请跳过
sudo apt install unzip
chmod -R +x scripts/
./scripts/download.sh

然后编译c++代码

复制代码
/workspace/sophon-demo/sample/DeepSORT/cpp/deepsort_bmcv/build# 
cd cpp/deepsort_bmcv
mkdir build && cd build
# 请根据实际情况修改-DSDK的路径,需使用绝对路径。
cmake -DTARGET_ARCH=soc -DSDK=/workspace/soc-sdk ..  
make

这时会生成deepsort_bmcv.soc文件,复制到盒子里

复制代码
:/workspace/sophon-demo/sample/DeepSORT/cpp/deepsort_bmcv# scp -r  deepsort_bmcv.soc [email protected]:/data/yolo/sophon-demo/sample/DeepSORT/cpp

测试视频

复制代码
./deepsort_bmcv.soc --input=rtsp://admin:sangfor@[email protected] --bmodel_detector=../../BM1684/yolov5s_v6.1_3output_int8_1b.bmodel --bmodel_extractor=../../BM1684/extractor_fp32_1b.bmodel --dev_id=0

运行相关代码,这个是检测图片的

复制代码
cd python
python3 deepsort_opencv.py --input ../datasets/mot15_trainset/ADL-Rundle-6/img1 --bmodel_detector ../models/BM1684/yolov5s_v6.1_3output_int8_1b.bmodel --bmodel_extractor ../models/BM1684/extractor_fp32_1b.bmodel --dev_id=0

对视频追踪

复制代码
python3 deepsort_opencv.py --input ../datasets/test_car_person_1080P.mp4 --bmodel_detector ../models/BM1684/yolov5s_v6.1_3output_int8_1b.bmodel --bmodel_extractor ../models/BM1684/extractor_fp32_1b.bmodel --dev_id=0

对本地摄像头视频追踪

复制代码
python3 deepsort_opencv.py --input rtsp://admin:sangfor@[email protected] --bmodel_detector ../models/BM1684/yolov5s_v6.1_3output_int8_1b.bmodel --bmodel_extractor ../models/BM1684/extractor_fp32_1b.bmodel --dev_id=0

人体姿态估计

复制代码
python3 python/openpose_opencv.py --input rtsp://admin:sangfor@[email protected] --bmodel models/BM1684/pose_coco_fp32_1b.bmodel --dev_id 0

生成的文件会放在sample/YOLOv5/data/models/BM1684/int8model/anquanmao_batch1

复制代码
:~/fugui/sophon-demo_20221027_181652/sophon-demo_v0.1.0_b909566_20221027/sample/YOLOv5/data/models/BM1684/int8model/anquanmao_batch1# ls
compilation.bmodel  input_ref_data.dat  io_info.dat  output_ref_data.dat

然后将转换好的模型推送到开发板

复制代码
scp compilation.bmodel linaro@{开发板ip地址}:/data/{你的yolov5存放路径}

开发板环境配置

搭建 libsophon 环境

复制代码
cd libsophon_<date>_<hash>
# 安装依赖库,只需要执行一次
sudo apt install dkms libncurses5
sudo dpkg -i sophon-*.deb
# 在终端执行如下命令,或者log out再log in当前用户后即可使用bm-smi等命令
source /etc/profile

python3 yolov5_new_1.py --input rtsp://admin:[email protected] --bmodel yolov5s_v6.1_3output_fp32_1b.bmodel

c++编译环境

安装libsophon

进入sophon-img_20221027_215835这个路径

解压里面的tar包

复制代码
:~/fugui/sophon-img_20221027_215835# tar -zxvf libsophon_soc_0.4.2_aarch64.tar.gz

将相关库目录和头文件目录拷贝到soc-sdk文件夹中

复制代码
:~/fugui/sophon-img_20221027_215835/libsophon_soc_0.4.2_aarch64/opt/sophon/libsophon-0.4.2# sudo cp -rf include lib ~/fugui/soc-sdk
安装sophon-opencv 和sophon-ffmpeg

先进入sophon-mw,解压sophon-mw-soc_0.4.0_aarch64.tar.gz这个tar包

复制代码
:~/fugui/sophon-mw_20221027_183429# tar -zxvf sophon-mw-soc_0.4.0_aarch64.tar.gz

复制相关文件到soc-sdk

复制代码
:~/fugui/sophon-mw_20221027_183429/sophon-mw-soc_0.4.0_aarch64/opt/sophon# cp -rf sophon-ffmpeg_0.4.0//lib sophon-ffmpeg_0.4.0/include/ ~/fugui/soc-sdk

:~/fugui/sophon-mw_20221027_183429/sophon-mw-soc_0.4.0_aarch64/opt/sophon# cp -rf sophon-opencv_0.4.0//lib sophon-opencv_0.4.0/include/ ~/fugui/soc-sdk

很简单,复制过去,交叉编译的环境就搭建好了

TPU-NNTC环境

这里我们是要在docker环境里编译的,所以先进入docker

复制代码
:~/fugui# docker run -v $PWD/:/workspace  -it sophgo/tpuc_dev:latest

然后进入tpu-nntc,初始化环境

复制代码
root@2bb02a2e27d5:/workspace/tpu-nntc# source ./scripts/envsetup.sh

docker里安装编译器

复制代码
root@2bb02a2e27d5:/workspace/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv/build# sudo apt-get install gcc-aarch64-linux-gnu g++-aarch64-linux-gnu

进入sophon-demo路径

下载相关文件

复制代码
:~/fugui/sophon-demo/sample/YOLOv5# chmod -R +x scripts/
:~/fugui/sophon-demo/sample/YOLOv5# ./scripts/download.sh

编译yolov5

我们这里只是交叉编译,不能在x86设备上运行,要复制到我们1684平台

先cmake

复制代码
root@2bb02a2e27d5:/workspace/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv/build# cmake -DTARGET_ARCH=soc -DSDK=/workspace/soc-sdk ..

在make

复制代码
root@2bb02a2e27d5:/workspace/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv/build# make

此时会出现.soc文件

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eWPar5Yp-1692844732110)(https://gitee.com/lizheng0219/picgo_img/raw/master/img202325/image-20230421134631891.png)

把输出的文件传导我们开发板上运行下

复制代码
scp -r yolov5_bmcv [email protected]:/data/sophon-demo/sample/YOLOv5/cpp/

运行推理图片

复制代码
./yolov5_bmcv.soc --input=../../coco128 --bmodel=../../python/yolov5s_v6.1_3output_fp32_1b.bmodel --dev_id=0 --conf_thresh=0.5 --nms_thresh=0.5 --classnames=../../coco.names 

推理视频

复制代码
./yolov5_bmcv.soc --input=../../test.avi --bmodel=../../python/yolov5s_v6.1_3output_fp32_1b.bmodel --dev_id=0 --conf_thresh=0.5 --nms_thresh=0.5 --classnames=../../coco.names 

c++推理网络摄像头

复制代码
./yolov5_bmcv.soc --input=rtsp://admin:sangfor@[email protected] --bmodel=/data/ai_box/yolov5s_640_coco_v6.1_3output_int8_1b_BM1684.bmodel --dev_id=0 --conf_thresh=0.5 --nms_thresh=0.5 --classnames=../../coco.names

./yolov5_bmcv.soc --input=rtsp://admin:sangfor@[email protected] --bmodel=/data/models/all16_v6.1_3output_int8_4b.bmodel --dev_id=0 --conf_thresh=0.5 --nms_thresh=0.5 --classnames=/data/models/all16.names

网络摄像头:安全帽

复制代码
 ./yolov5_bmcv.soc  --bmodel=anquanmao.bmodel --dev_id=0 --conf_thresh=0.5 --nms_thresh=0.5 --classnames=../../coco.names 

Python推理

复制代码
python3 yolov5_opencv.py --input rtsp://admin:[email protected]  --bmodel ../yolov5s_v6.1_3output_int8_4b.bmodel

前端只展示一路摄像头,我们只需要做一路摄像头使用多个算法推理。

不展示的摄像头也要实时在后台推理,有出现问题时要及时报警。

这样我们需做出单路摄像头推理多算法(单摄像头单算法也行,把所有检测都放到一个模型里,输出时只输出他选择的那个)

把所有模型统一训练比较简单,后台一块推理

sophon-pipeline

本地编译
复制代码
docker run -v $PWD/:/workspace -p 8001:8001 -it sophgo/tpuc_dev:latest
source scripts/envsetup.sh
sudo apt-get install -y  gcc-aarch64-linux-gnu g++-aarch64-linux-gnu libeigen3-dev

./tools/compile.sh soc /workspace/soc-sdk
开发板运行
复制代码
linaro@bm1684:/data/sophon-pipeline/release/video_stitch_demo$ ./soc/video_stitch_demo --config=cameras_video_stitch1.json

英码

复制代码
export PYTHONPATH=$PYTHONPATH:/system/libexport
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/system/lib/
python
复制代码
pip3 install sophon_arm-master-py3-none-any.whl --force-reinstall 
pip3 install opencv-python-headless<4.3

开发板执行命令

复制代码
python3 python/yolov5_opencv.py --input ../data/images/coco200/000000009772.jpg  --model  ../compilation.bmodel --dev_id 0 --conf_thresh 0.5 --nms_thresh 0.5 

python3 python/yolov5_opencv.py --input ../data/xiyanimg/000017.jpg  --model  ../compilation.bmodel --dev_id 0 --conf_thresh 0.5 --nms_thresh 0.5

python3 python/yolov5_video.py --input rtsp://admin:sangfor@[email protected] --model  ../compilation.bmodel
复制代码
python3 python/yolov5_video.py --input rtsp://admin:[email protected]  --model  ../compilation.bmodel --dev_id 0 --conf_thresh 0.5 --nms_thresh 0.5 

tar -zxf ~/Release_221201-public/sophon-mw_20221227_040823/sophon-mw-soc_*_aarch64.tar.gz
相关推荐
moongoblin几秒前
行业赋能篇-2-能源行业安全运维升级
运维·安全·协作
红衣小蛇妖23 分钟前
神经网络-Day44
人工智能·深度学习·神经网络
忠于明白23 分钟前
Spring AI 核心工作流
人工智能·spring·大模型应用开发·spring ai·ai 应用商业化
极简网络科技27 分钟前
Docker、Wsl 打包迁移环境
运维·docker·容器
黑客老李32 分钟前
JavaSec | SpringAOP 链学习分析
java·运维·服务器·开发语言·学习·apache·memcached
杨浦老苏33 分钟前
轻量级Docker管理工具Docker Switchboard
运维·docker·群晖
江湖有缘35 分钟前
【Docker管理工具】部署Docker可视化管理面板Dpanel
运维·docker·容器
大写-凌祁1 小时前
论文阅读:HySCDG生成式数据处理流程
论文阅读·人工智能·笔记·python·机器学习
柯南二号1 小时前
深入理解 Agent 与 LLM 的区别:从智能体到语言模型
人工智能·机器学习·llm·agent
这儿有一堆花1 小时前
安全访问家中 Linux 服务器的远程方案 —— 专为单用户场景设计
linux·服务器·安全