【大数据学习 | 面经】Spark3.x对比2.x有哪些优点

1. 性能优化

1.1 自适应查询执行(AQE)

Spark3.x引用了AQE功能,它可以在运行时动态调整查询计划,包括合并小文件,优化join策略等。

1.2 动态分区裁剪

改进了SQL查询中的分区裁剪能力,允许在运行时根据过滤条件更精确的确定需要读取的分区,从而减少不必要的IO操作。

1.3 广播连接优化

增强了广播连接功能,使得广播表的选择更加智能,减少不必要的广播操作,并且可以更好的处理大表与小表之间的连接。

1.4 shuffle处理的优化

改进了shuffle操作的效率,例如通过减少磁盘IO和网络传输加速数据交换过程。

1.5 SQL性能提升

对TPC-DS基准测试中的一些查询性能有显著提升,部分查询的速度提高了2倍到18倍。

2. 易用性和API改进

2.1 统一编程模型

提供了更为统一的编程接口,简化了DataFrame和Dataset API的使用,同时更强了Structured Streaming的功能。

相关推荐
夜影风1 天前
RabbitMQ核心架构与应用
分布式·架构·rabbitmq
计算机毕设残哥1 天前
完整技术栈分享:基于Hadoop+Spark的在线教育投融资大数据可视化分析系统
大数据·hadoop·python·信息可视化·spark·计算机毕设·计算机毕业设计
计算机源码社2 天前
分享一个基于Hadoop+spark的超市销售数据分析与可视化系统,超市顾客消费行为分析系统的设计与实现
大数据·hadoop·数据分析·spark·计算机毕业设计源码·计算机毕设选题·大数据选题推荐
码界筑梦坊2 天前
135-基于Spark的抖音数据分析热度预测系统
大数据·python·数据分析·spark·毕业设计·echarts
斯普信专业组2 天前
Rabbitmq+STS+discovery_k8s +localpv部署排坑详解
分布式·kubernetes·rabbitmq
泰勒疯狂展开2 天前
Java研学-RabbitMQ(八)
java·rabbitmq·java-rabbitmq
Monly212 天前
RabbitMQ:Windows版本安装部署
rabbitmq
Linux运维技术栈2 天前
解决程序连不上RabbitMQ:Attempting to connect to/access to vhost虚拟主机挂了的排错与恢复
分布式·rabbitmq·ruby
计算机毕业设计木哥2 天前
计算机毕设大数据选题推荐 基于spark+Hadoop+python的贵州茅台股票数据分析系统【源码+文档+调试】
大数据·hadoop·python·计算机网络·spark·课程设计
在未来等你3 天前
RabbitMQ面试精讲 Day 19:网络调优与连接池管理
性能优化·消息队列·rabbitmq·高并发·连接池·面试准备·网络调优