两个字符串的最小ASCII删除和

*************

C++

topic: 712. 两个字符串的最小ASCII删除和 - 力扣(LeetCode)

*************

Before check the topic, I have retuened my new-buy keyboard yestarday cuz my wrist hurts, so maybe I need a low-profile keyboard.

check the topic:

first I donnot know what is ASCII. I kook for some informations and FYI:

ASCII(American Standard Code for Information Interchange,美国信息交换标准代码)是一种字符编码标准,用于表示文本在计算机、通信设备和其它电子设备中的表示形式。ASCII码使用7位二进制数来表示128个不同的字符,包括大小写英文字母、数字0-9以及一些控制字符和标点符号。ASCII码的前32个字符(0-31)是控制字符,用于控制文本的显示和传输,比如换行(LF,ASCII码为10)和回车(CR,ASCII码为13)。剩下的96个字符(32-127)是可打印字符,包括我们常见的字母和数字。

You see, the topic in the other ways says is we have two strings, s1 and s 2, insert or erase the elements in s1, the new one eauals s2, find the least step.

Search the familiar project is my style. U gays guess what, I do find one which is

1143. 最长公共子序列 - 力扣(LeetCode), Longest Common Subsequence, LCS for short. That makes the topic eazy. Here is the spark:

  1. find the LCS of s1 and s2;

  2. Sum the ASCII values of the characters in string s1 that are not part of the LCS.

  3. Sum the ASCII values of the characters in string s2 that are not part of the LCS.

  4. Sum the values.

That is the answer.

Have an eye on how to solve 1143. 最长公共子序列 - 力扣(LeetCode), the soal is as follow

Asshole-eye always superise me. and the code is

cpp 复制代码
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
       
        // write the follows without hesitation
        int m = text1.size();
        int n = text2.size();
        vector<vector<int>> dp(m + 1, vector(n + 1, 0));

        // main code 
        for (int i = 1; i <= m; i++){
            for (int j = 1; j <= n; j++){
                 if (text1[i-1] == text2[j-1]){ // special attention to the number
                    dp[i][j] = dp[i-1][j-1] + 1;
                } else {
                     dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]); // more ez formula
                    }
            }
        }

        return dp[m][n];


    }
};

But in this case, use the soal again,

cpp 复制代码
class Solution {
public:
    
    // sum LCS's ASCII
    int getLCSAsciiSum(string s1, string s2) {
        int m = s1.size();
        int n = s2.size();
        vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));

        // main code 
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (s1[i - 1] == s2[j - 1]) { // special attention to the number
                    dp[i][j] = dp[i - 1][j - 1] + int(s1[i - 1]);
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]); // more ez formula
                }
            }
        }

        return dp[m][n];
    }
    
};

then how to sum the ASCII? easy way to sum:

cpp 复制代码
class Solution {
public:
    
     // sum LCS's ASCII
    int getLCSAsciiSum(string s1, string s2) {
        int m = s1.size();
        int n = s2.size();
        vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));

        // main code 
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (s1[i - 1] == s2[j - 1]) { // special attention to the number
                    dp[i][j] = dp[i - 1][j - 1] + int(s1[i - 1]);
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]); // more ez formula
                }
            }
        }

        return dp[m][n];
    }
    
    // sum ASCII
    int getAsciiSum(string s) {
        int sum = 0;
        for (char c : s) {
            sum += int(c);
        }
        return sum;
    }

    
};

another spark is,

  1. Sum the ASCII values of the characters in string s1 that are not part of the LCS.

  2. Sum the ASCII values of the characters in string s2 that are not part of the LCS.

  3. Sum the values.

use math to caculate is

sum = sum[s1] + sum[s2] - 2 * sum[LCS]

cpp 复制代码
class Solution {
public:
    
     // sum LCS's ASCII
    int getLCSAsciiSum(string s1, string s2) {
        int m = s1.size();
        int n = s2.size();
        vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));

        // main code 
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (s1[i - 1] == s2[j - 1]) { // special attention to the number
                    dp[i][j] = dp[i - 1][j - 1] + int(s1[i - 1]);
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]); // more ez formula
                }
            }
        }

        return dp[m][n];
    }
    
    // sum ASCII
    int getAsciiSum(string s) {
        int sum = 0;
        for (char c : s) {
            sum += int(c);
        }
        return sum;
    }

    // main code
    int minimumDeleteSum(string s1, string s2) {
        int sum1 = getAsciiSum(s1);
        int sum2 = getAsciiSum(s2);
        int sum_LCS = getLCSAsciiSum(s1, s2);
        return sum1 + sum2 - 2 * sum_LCS;
    }
};

Here we go.

相关推荐
Greedy Alg2 小时前
LeetCode 142. 环形链表 II
算法
睡不醒的kun2 小时前
leetcode算法刷题的第三十二天
数据结构·c++·算法·leetcode·职场和发展·贪心算法·动态规划
先做个垃圾出来………3 小时前
残差连接的概念与作用
人工智能·算法·机器学习·语言模型·自然语言处理
SuperCandyXu4 小时前
P3205 [HNOI2010] 合唱队-普及+/提高
c++·算法·洛谷
_OP_CHEN4 小时前
数据结构(C语言篇):(十二)实现顺序结构二叉树——堆
c语言·数据结构·算法·二叉树·学习笔记··顺序结构二叉树
Yingjun Mo5 小时前
1. 统计推断-基于神经网络与Langevin扩散的自适应潜变量建模与优化
人工智能·神经网络·算法·机器学习·概率论
地平线开发者6 小时前
征程 6 | 灰度图部署链路介绍
算法·自动驾驶
地平线开发者6 小时前
手撕大模型|KVCache 原理及代码解析
算法·自动驾驶
共享家95277 小时前
经典动态规划题解
算法·leetcode·动态规划
Pluchon7 小时前
硅基计划3.0 Map类&Set类
java·开发语言·数据结构·算法·哈希算法·散列表