两个字符串的最小ASCII删除和

*************

C++

topic: 712. 两个字符串的最小ASCII删除和 - 力扣(LeetCode)

*************

Before check the topic, I have retuened my new-buy keyboard yestarday cuz my wrist hurts, so maybe I need a low-profile keyboard.

check the topic:

first I donnot know what is ASCII. I kook for some informations and FYI:

ASCII(American Standard Code for Information Interchange,美国信息交换标准代码)是一种字符编码标准,用于表示文本在计算机、通信设备和其它电子设备中的表示形式。ASCII码使用7位二进制数来表示128个不同的字符,包括大小写英文字母、数字0-9以及一些控制字符和标点符号。ASCII码的前32个字符(0-31)是控制字符,用于控制文本的显示和传输,比如换行(LF,ASCII码为10)和回车(CR,ASCII码为13)。剩下的96个字符(32-127)是可打印字符,包括我们常见的字母和数字。

You see, the topic in the other ways says is we have two strings, s1 and s 2, insert or erase the elements in s1, the new one eauals s2, find the least step.

Search the familiar project is my style. U gays guess what, I do find one which is

1143. 最长公共子序列 - 力扣(LeetCode), Longest Common Subsequence, LCS for short. That makes the topic eazy. Here is the spark:

  1. find the LCS of s1 and s2;

  2. Sum the ASCII values of the characters in string s1 that are not part of the LCS.

  3. Sum the ASCII values of the characters in string s2 that are not part of the LCS.

  4. Sum the values.

That is the answer.

Have an eye on how to solve 1143. 最长公共子序列 - 力扣(LeetCode), the soal is as follow

Asshole-eye always superise me. and the code is

cpp 复制代码
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
       
        // write the follows without hesitation
        int m = text1.size();
        int n = text2.size();
        vector<vector<int>> dp(m + 1, vector(n + 1, 0));

        // main code 
        for (int i = 1; i <= m; i++){
            for (int j = 1; j <= n; j++){
                 if (text1[i-1] == text2[j-1]){ // special attention to the number
                    dp[i][j] = dp[i-1][j-1] + 1;
                } else {
                     dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]); // more ez formula
                    }
            }
        }

        return dp[m][n];


    }
};

But in this case, use the soal again,

cpp 复制代码
class Solution {
public:
    
    // sum LCS's ASCII
    int getLCSAsciiSum(string s1, string s2) {
        int m = s1.size();
        int n = s2.size();
        vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));

        // main code 
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (s1[i - 1] == s2[j - 1]) { // special attention to the number
                    dp[i][j] = dp[i - 1][j - 1] + int(s1[i - 1]);
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]); // more ez formula
                }
            }
        }

        return dp[m][n];
    }
    
};

then how to sum the ASCII? easy way to sum:

cpp 复制代码
class Solution {
public:
    
     // sum LCS's ASCII
    int getLCSAsciiSum(string s1, string s2) {
        int m = s1.size();
        int n = s2.size();
        vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));

        // main code 
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (s1[i - 1] == s2[j - 1]) { // special attention to the number
                    dp[i][j] = dp[i - 1][j - 1] + int(s1[i - 1]);
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]); // more ez formula
                }
            }
        }

        return dp[m][n];
    }
    
    // sum ASCII
    int getAsciiSum(string s) {
        int sum = 0;
        for (char c : s) {
            sum += int(c);
        }
        return sum;
    }

    
};

another spark is,

  1. Sum the ASCII values of the characters in string s1 that are not part of the LCS.

  2. Sum the ASCII values of the characters in string s2 that are not part of the LCS.

  3. Sum the values.

use math to caculate is

sum = sum[s1] + sum[s2] - 2 * sum[LCS]

cpp 复制代码
class Solution {
public:
    
     // sum LCS's ASCII
    int getLCSAsciiSum(string s1, string s2) {
        int m = s1.size();
        int n = s2.size();
        vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));

        // main code 
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (s1[i - 1] == s2[j - 1]) { // special attention to the number
                    dp[i][j] = dp[i - 1][j - 1] + int(s1[i - 1]);
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]); // more ez formula
                }
            }
        }

        return dp[m][n];
    }
    
    // sum ASCII
    int getAsciiSum(string s) {
        int sum = 0;
        for (char c : s) {
            sum += int(c);
        }
        return sum;
    }

    // main code
    int minimumDeleteSum(string s1, string s2) {
        int sum1 = getAsciiSum(s1);
        int sum2 = getAsciiSum(s2);
        int sum_LCS = getLCSAsciiSum(s1, s2);
        return sum1 + sum2 - 2 * sum_LCS;
    }
};

Here we go.

相关推荐
源代码•宸2 小时前
分布式缓存-GO(分布式算法之一致性哈希、缓存对外服务化)
开发语言·经验分享·分布式·后端·算法·缓存·golang
yongui478343 小时前
MATLAB的指纹识别系统实现
算法
高山上有一只小老虎3 小时前
翻之矩阵中的行
java·算法
jghhh013 小时前
RINEX文件进行卫星导航解算
算法
爱思德学术4 小时前
中国计算机学会(CCF)推荐学术会议-A(计算机科学理论):LICS 2026
算法·计算机理论·计算机逻辑
CVHub4 小时前
多模态图文训推一体化平台 X-AnyLabeling 3.0 版本正式发布!首次支持远程模型推理服务,并新增 Qwen3-VL 等多款主流模型及诸多功能特性,等
算法
hoiii1874 小时前
MATLAB实现Canny边缘检测算法
算法·计算机视觉·matlab
qq_430855884 小时前
线代第二章矩阵第四课:方阵的幂
算法·机器学习·矩阵
roman_日积跬步-终至千里4 小时前
【计算机设计与算法-习题2】动态规划应用:矩阵乘法与钢条切割问题
算法·矩阵·动态规划
kupeThinkPoem4 小时前
计算机算法导论第三版算法视频讲解
数据结构·算法