迁移学习!超高创新!GASF-AlexNet-MSA,基于格拉姆角场和AlexNet结合多头注意力机制的故障识别程序

故障识别程序

目录

效果一览







基本介绍

1.GASF-AlexNet-MSA,基于格拉姆角场和AlexNet结合多头注意力机制的故障识别程序。算法为Matlab编写,注释清晰,逻辑详细,可以方便地替换数据。

2.excel数据,方便替换。

3.图很多,包括聚类效果图、分类识别效果图,混淆矩阵图。命令窗口输出分类准确率、灵敏度、特异性、曲线下面积、Kappa系数、F值。

4.附赠案例数据可直接运行main一键出图,注意程序和数据放在一个文件夹,运行环境为Matlab2020b及以上。

5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。可在下载区获取数据和程序内容。

程序设计

  • 完整源码和数据获取方式私信博主回复GASF-AlexNet-MSA故障识别程序
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行



%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_dim = size(res, 2) - 1;               % 特征维度
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)

%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];

%%  划分数据集
for i = 1 : num_class
    mid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本
    mid_size = size(mid_res, 1);                    % 得到不同类别样本个数
    mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数

         
end

%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';

%%  得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

t_train = categorical(T_train)';
t_test  = categorical(T_test )';

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
正在走向自律30 分钟前
Python 数据分析与可视化:开启数据洞察之旅(5/10)
开发语言·人工智能·python·数据挖掘·数据分析
LuvMyLife31 分钟前
基于Win在VSCode部署运行OpenVINO模型
人工智能·深度学习·计算机视觉·openvino
fancy16616643 分钟前
力扣top100 矩阵置零
人工智能·算法·矩阵
gaosushexiangji1 小时前
基于千眼狼高速摄像机与三色掩模的体三维粒子图像测速PIV技术
人工智能·数码相机·计算机视觉
中电金信1 小时前
重构金融数智化产业版图:中电金信“链主”之道
大数据·人工智能
奋斗者1号2 小时前
Docker 部署 - Crawl4AI 文档 (v0.5.x)
人工智能·爬虫·机器学习
陈奕昆2 小时前
五、【LLaMA-Factory实战】模型部署与监控:从实验室到生产的全链路实践
开发语言·人工智能·python·llama·大模型微调
多巴胺与内啡肽.2 小时前
OpenCV进阶操作:光流估计
人工智能·opencv·计算机视觉
妄想成为master2 小时前
计算机视觉----时域频域在图像中的意义、傅里叶变换在图像中的应用、卷积核的频域解释
人工智能·计算机视觉·傅里叶
NLP小讲堂2 小时前
LLaMA Factory 深度调参
人工智能·机器学习