顶刊算法 | 鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Maltab)

顶刊算法 | 鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Maltab)

目录

    • [顶刊算法 | 鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Maltab)](#顶刊算法 | 鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Maltab))

效果一览





基本介绍

1.Matlab实现OOA-BiTCN-BiGRU-Attention鱼鹰算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测(完整源码和数据),优化学习率,BiGRU的神经元个数,滤波器个数, 正则化参数;

2.输入多个特征,输出单个变量,回归预测,自注意力机制层,运行环境matlab2023及以上;

3.命令窗口输出R2、MAE、MAPE、 RMSE多指标评价;

4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

5.适用对象:大学生课程设计、期末大作业和毕业设计。模型只是提供一个衡量数据集精度的方法,因此无法保证替换数据就一定得到您满意的结果。

程序设计

  • 完整程序和数据下载私信博主回复鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Maltab)
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行



%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关推荐
之歆1 小时前
Al大模型-本地私有化部署大模型-大模型微调
人工智能·pytorch·ai作画
paid槮3 小时前
机器学习总结
人工智能·深度学习·机器学习
Hello123网站4 小时前
职得AI简历-免费AI简历生成工具
人工智能·ai工具
亚里随笔4 小时前
稳定且高效:GSPO如何革新大型语言模型的强化学习训练?
人工智能·机器学习·语言模型·自然语言处理·llm·rlhf
荼蘼4 小时前
机器学习之PCA降维
人工智能·机器学习
东方不败之鸭梨的测试笔记4 小时前
智能测试用例生成工具设计
人工智能·ai·langchain
失散137 小时前
深度学习——02 PyTorch
人工智能·pytorch·深度学习
图灵学术计算机论文辅导7 小时前
傅里叶变换+attention机制,深耕深度学习领域
人工智能·python·深度学习·计算机网络·考研·机器学习·计算机视觉
重启的码农9 小时前
ggml 介绍(4) 计算图 (ggml_cgraph)
c++·人工智能
重启的码农9 小时前
ggml 介绍(5) GGUF 上下文 (gguf_context)
c++·人工智能·神经网络