[ComfyUI]Florence提示词反推、目标检测

文章目录

1.模型介绍

Florence-2是一个由微软Azure AI团队推出的多功能视觉模型,它在AI领域的独特之处主要体现在以下几个方面:
多功能性 :Florence-2能够执行图像描述、目标检测、视觉定位和图像分割等多种计算机视觉任务。这种多功能性使得它能够处理各种视觉任务,而不需要针对特定任务训练不同的模型。
统一的表示方法 :Florence-2采用了基于prompt的统一表示方法,使其能够广泛适用于各种计算机视觉和视觉语言任务这种统一的范式增强了模型的通用性和灵活性。
序列到序列学习 :Florence-2基于Transformer架构,并采用序列到序列的学习方法,编码器将图像转换为序列表示,解码器再将这些表示转换为文本输出这种设计提高了模型处理任务的灵活性。
大规模数据集训 练:Florence-2训练使用包含1.26亿张图像和54亿个标注的超大数据集FLD-5B,结合自动化图像标注技术和模型迭代,确保数据的高质量和多样性。
多任务学习 :Florence-2通过多任务学习,同时关注底层细节和高层次语义理解,使得模型能够更全面、深入地理解视觉信息。
开源和可访问性:Florence-2的权重和代码已经在开源平台Hugging Face上公开,任何人都可以访问和使用。

这些特点使得Florence-2在AI领域,尤其是在视觉任务处理方面,提供了一个强大而灵活的工具

参考资料
Florence-2:小模型,大能量,提示词反推、文字识别、对象检测,指定蒙版样样精通,一个模型搞定所有!

2.模型部署

需要安装的模型权重

这是最基本的Florence-2-base模型,下载里面的所有文件到"models/LLM/Florence-2-base"文件夹
Florence-2-base

还有其他几个模型也可以下
microsoft/Florence-2-base-ft
Florence-2-large
microsoft/Florence-2-large-ft

部署报错
①FlashAttention2 用不了

FlashAttention2 has been toggled on, but it cannot be used due to the following errorjavascript:void(0): the package flash_attn seems to be not installed. Please refer to the documentation of https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2 to install Flash Attention 2.

参考Error: FlashAttention2 has been toggled on, but it cannot be used [Windows 11] #

直接把注意力换为sdpa不要用flash_attention_2了

3.一些测试结果

①目标检测

可以看到目标检测的效果还是可以的

②图生文

In this picture we can see a person smiling and in the background it is dark

In this image we can see cartoons. In the background of the image there are trees and sky.

这个可以做很多的任务

相关推荐
格林威1 小时前
常规线扫描镜头有哪些类型?能做什么?
人工智能·深度学习·数码相机·算法·计算机视觉·视觉检测·工业镜头
倔强青铜三2 小时前
苦练Python第63天:零基础玩转TOML配置读写,tomllib模块实战
人工智能·python·面试
B站计算机毕业设计之家2 小时前
智慧交通项目:Python+YOLOv8 实时交通标志系统 深度学习实战(TT100K+PySide6 源码+文档)✅
人工智能·python·深度学习·yolo·计算机视觉·智慧交通·交通标志
高工智能汽车2 小时前
棱镜观察|极氪销量遇阻?千里智驾左手服务吉利、右手对标华为
人工智能·华为
txwtech2 小时前
第6篇 OpenCV RotatedRect如何判断矩形的角度
人工智能·opencv·计算机视觉
正牌强哥2 小时前
Futures_ML——机器学习在期货量化交易中的应用与实践
人工智能·python·机器学习·ai·交易·akshare
倔强青铜三3 小时前
苦练Python第62天:零基础玩转CSV文件读写,csv模块实战
人工智能·python·面试
大模型真好玩3 小时前
低代码Agent开发框架使用指南(二)—Coze平台核心功能概览
人工智能·coze·deepseek
jerryinwuhan4 小时前
最短路径问题总结
开发语言·人工智能·python
wanhengidc4 小时前
云手机能够做些什么?
运维·服务器·人工智能·智能手机·云计算