CAU数据挖掘 第五章 聚类问题

基本概念

性质:

应用:

划分聚类

k-means算法( 基于质心的技术)


优缺点

改进

k-medoids算法( 基于代表对象的技术)

PAM是 k-medoids算法 的算法之一

性能分析:

CLARA方法-大数据集合-取样

层次聚类算法

通过建树或者拆树的方法进行聚类

AGNES算法

由下而上的聚类

DIANA算法

如果要分出k个聚类,则每次从旧聚类(最开始的大聚类)中选出中心点进行聚类,选k - 1次

BIRCH算法

提取每个点的聚类特征( Clustering Feature, CF)建立聚类特征树( Clustering Feature Tree, CF树),通过树划分的叶子节点簇进行聚类,从而提高性能。

CF树:

注意,叶子结点是CF簇

如何建树:

如何分裂:

叶节点阈值(T)为3,则下图中叶节点分裂

内部节点阈值(L)为3,图中为4,发生分裂

密度聚类

只要邻近区域的密度( 对象或数据点的数目) 超过某个阀值, 就把它加到与之相近的聚类中。

也就是说, 对给定类中的每个数据点, 在一个给定范围的区域中必须至少包含某个数目的点。

DBSCAN

几个重要概念:



算法流程:

缺点:

  • 对参数敏感,设置不同的参数,聚类效果差异大
  • 只能发现密度相似的类

OPTICS算法

通过点排序识别聚类结构。

思想:计算一个点周围的点到这个点的可达距离,并进行排序,直到算完所有可以到达的点;再用没有计算的点计算周围可以到达的点的距离,如此重复直到所有点算完。

核心距离与可达距离

距离排序



将排序后的队列进行数据可视化:

DENCLUE算法: 影响函数

网格聚类

STING算法-统计信息网格

WaveCluster算法


流程:


模型聚类

模型聚类主要有两类: 统计学方法( EM和COBWEB算法) 和神经网络方法( SOM算法) 。

EM算法

COBWEB算法

SOM算法

模糊聚类

聚类估计

估计聚类趋势

霍普金斯统计量

即判断数据是否可聚类

计算原理:

可以看到当样本点与实际点距离很短,均匀点与实际点很远时,H偏大,数据集更又可能聚类。

确定簇数

简单的经验方法

肘方法

测定聚类质量

相关推荐
土星云SaturnCloud16 小时前
液冷“内卷”:在局部优化与系统重构之间,寻找第三条路
服务器·人工智能·ai·计算机外设
智界前沿16 小时前
集之互动AI创意视频解决方案:商业级可控,让品牌创意从“灵感”直达“落地”
人工智能·aigc
baby_hua16 小时前
20251024_PyTorch深度学习快速入门教程
人工智能·pytorch·深度学习
brave and determined17 小时前
CANN训练营 学习(day9)昇腾AscendC算子开发实战:从零到性能冠军
人工智能·算法·机器学习·ai·开发环境·算子开发·昇腾ai
SelectDB17 小时前
Apache Doris 4.0.2 版本正式发布
数据库·人工智能
Solar202517 小时前
TOB企业智能获客新范式:基于数据驱动与AI的销售线索挖掘与孵化架构实践
人工智能·架构
AI营销实验室17 小时前
原圈科技如何以多智能体赋能AI营销内容生产新范式
人工智能
视***间17 小时前
智驱万物,视联未来 —— 视程空间以 AI 硬科技赋能全场景智能革新
人工智能·边缘计算·视程空间·ai算力开发板
一个java开发17 小时前
mcp demo 智能天气服务:经纬度预报与城市警报
人工智能