CAU数据挖掘 第五章 聚类问题

基本概念

性质:

应用:

划分聚类

k-means算法( 基于质心的技术)


优缺点

改进

k-medoids算法( 基于代表对象的技术)

PAM是 k-medoids算法 的算法之一

性能分析:

CLARA方法-大数据集合-取样

层次聚类算法

通过建树或者拆树的方法进行聚类

AGNES算法

由下而上的聚类

DIANA算法

如果要分出k个聚类,则每次从旧聚类(最开始的大聚类)中选出中心点进行聚类,选k - 1次

BIRCH算法

提取每个点的聚类特征( Clustering Feature, CF)建立聚类特征树( Clustering Feature Tree, CF树),通过树划分的叶子节点簇进行聚类,从而提高性能。

CF树:

注意,叶子结点是CF簇

如何建树:

如何分裂:

叶节点阈值(T)为3,则下图中叶节点分裂

内部节点阈值(L)为3,图中为4,发生分裂

密度聚类

只要邻近区域的密度( 对象或数据点的数目) 超过某个阀值, 就把它加到与之相近的聚类中。

也就是说, 对给定类中的每个数据点, 在一个给定范围的区域中必须至少包含某个数目的点。

DBSCAN

几个重要概念:



算法流程:

缺点:

  • 对参数敏感,设置不同的参数,聚类效果差异大
  • 只能发现密度相似的类

OPTICS算法

通过点排序识别聚类结构。

思想:计算一个点周围的点到这个点的可达距离,并进行排序,直到算完所有可以到达的点;再用没有计算的点计算周围可以到达的点的距离,如此重复直到所有点算完。

核心距离与可达距离

距离排序



将排序后的队列进行数据可视化:

DENCLUE算法: 影响函数

网格聚类

STING算法-统计信息网格

WaveCluster算法


流程:


模型聚类

模型聚类主要有两类: 统计学方法( EM和COBWEB算法) 和神经网络方法( SOM算法) 。

EM算法

COBWEB算法

SOM算法

模糊聚类

聚类估计

估计聚类趋势

霍普金斯统计量

即判断数据是否可聚类

计算原理:

可以看到当样本点与实际点距离很短,均匀点与实际点很远时,H偏大,数据集更又可能聚类。

确定簇数

简单的经验方法

肘方法

测定聚类质量

相关推荐
云卓SKYDROID6 分钟前
无人机激光避障技术概述
人工智能·无人机·航电系统·高科技·云卓科技
蜉蝣之翼❉7 分钟前
图像处理之浓度(AI 调研)
图像处理·人工智能·机器学习
mwq3012312 分钟前
Transformer: LayerNorm层归一化模块详解(PyTorch实现)
人工智能
Sherry Wangs25 分钟前
显卡算力过高导致PyTorch不兼容的救赎指南
人工智能·pytorch·显卡
Apache Flink37 分钟前
阿里云、Ververica、Confluent、Linkedin携手推进流式创新,共筑智能体AI未来
人工智能·阿里云·云计算
Elastic 中国社区官方博客1 小时前
AI Agent 评估:Elastic 如何测试代理框架
大数据·人工智能·elasticsearch·搜索引擎
中科米堆1 小时前
中科米堆CASAIM自动化三维测量实现注塑模具快速尺寸测量
运维·人工智能·自动化
CoookeCola1 小时前
Google Landmarks Dataset v2 (GLDv2):面向实例级识别与检索的500万图像,200k+类别大规模地标识别基准
图像处理·人工智能·学习·目标检测·计算机视觉·视觉检测
云青黛1 小时前
轮廓系数(一个异型簇的分类标准)
人工智能·算法·机器学习
isyoungboy1 小时前
PIL与OpenCV双线性插值实现差异导致模型精度不够踩坑
人工智能·opencv·计算机视觉