分类算法3.1 sklearn转换器和估计器;3.2 K-近邻算法

3.1 sklearn转换器和估计器

转换器

估计器(estimator)

3.1.1 sklearn转换器 ------特征工程的父类

1.实例化(实例化的是一个转换器类(transforer))

2.调用fit_transform(对于文档建立分类词频矩阵,不能同时调用)

标准化:

(x-mean)/std

fit_transform()

fit() :计算 每一列的平均值,标准差

transform() :(x-mean)/std进行最终的转换

3.1.2 估计器(sklearn机器学习算法的实现)

估计器工作流程

估计器(estimator)

  1. 实例化一个estimator

  2. estimator.fit(x_train,y_train) 计算

  3. 模型评估:

1) 直接比对真实值和预测值

y_preidct = estimator.predict(x_test)

y_test == y_predict

  1. 计算准确率

accuray = estimator.score(x_test,y_test)

3.2 K-近邻算法

3.2.1什么是K-近邻算法

1.K-近邻算法(KNN)原理

这个算法是机器学习中一个比较经典的算法。

定义:

如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

距离公式:

求算距离有以下几种方法:

曼哈顿距离,绝对值距离,明可夫斯基距离。

2 电影类型分析

电影类型分析

k = 1 爱情片

k = 2 爱情片

k = 6 无法确定

k = 7 动作片

3 问题

如果取的最近的电影数量不一样,会是什么结果?

k值取得过小,容易受到异常点的影响

k值取得过大,样本不均衡的影响

结合前面的约会对象数据,分析K-近邻算法需要做什么样的处理

3.2.2 K-近邻算法API

3.2.3 案例1 : 鸢尾花种类预测

1 数据集介绍

iris数据集是常用的分类实验室数据集,有Fsisher,1936收集整理,iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。

1)获取数据

2)数据集划分

3)特征工程

标准化

4)KNN预估器流程

5)模型评估

pycharm代码:

3.2.4 K-近邻总结

优点:简单,易于理解,易于实现,无需训练

缺点:懒惰算法,对测试样本分类时的计算量大,内存开销大

必须使用指定k值,k值选择不当则分类精度不能保证

使用场景:小数据场景,几千-几万样本,具体场景具体业务去测试

相关推荐
rit84324991 小时前
基于BP神经网络的语音特征信号分类
人工智能·神经网络·分类
火星数据-Tina13 小时前
AI数据分析在体育中的应用:技术与实践
人工智能·数据挖掘·数据分析
Jay Kay16 小时前
ReLU 新生:从死亡困境到强势回归
人工智能·数据挖掘·回归
Blossom.11816 小时前
使用Python和Flask构建简单的机器学习API
人工智能·python·深度学习·目标检测·机器学习·数据挖掘·flask
生信学术纵览16 小时前
中科院1区顶刊|IF14+:多组学MR联合单细胞时空分析,锁定心血管代谢疾病的免疫治疗新靶点
数据挖掘·数据分析
壹氿18 小时前
Supersonic 新一代AI数据分析平台
人工智能·数据挖掘·数据分析
SelectDB技术团队20 小时前
Apache Doris + MCP:Agent 时代的实时数据分析底座
人工智能·数据挖掘·数据分析·apache·mcp
苏苏susuus20 小时前
机器学习:集成学习概念和分类、随机森林、Adaboost、GBDT
机器学习·分类·集成学习
企销客CRM1 天前
CRM管理软件的数据可视化功能使用技巧:让数据驱动决策
信息可视化·数据挖掘·数据分析·用户运营
人大博士的交易之路1 天前
今日行情明日机会——20250606
大数据·数学建模·数据挖掘·数据分析·涨停回马枪