分类算法3.1 sklearn转换器和估计器;3.2 K-近邻算法

3.1 sklearn转换器和估计器

转换器

估计器(estimator)

3.1.1 sklearn转换器 ------特征工程的父类

1.实例化(实例化的是一个转换器类(transforer))

2.调用fit_transform(对于文档建立分类词频矩阵,不能同时调用)

标准化:

(x-mean)/std

fit_transform()

fit() :计算 每一列的平均值,标准差

transform() :(x-mean)/std进行最终的转换

3.1.2 估计器(sklearn机器学习算法的实现)

估计器工作流程

估计器(estimator)

  1. 实例化一个estimator

  2. estimator.fit(x_train,y_train) 计算

  3. 模型评估:

1) 直接比对真实值和预测值

y_preidct = estimator.predict(x_test)

y_test == y_predict

  1. 计算准确率

accuray = estimator.score(x_test,y_test)

3.2 K-近邻算法

3.2.1什么是K-近邻算法

1.K-近邻算法(KNN)原理

这个算法是机器学习中一个比较经典的算法。

定义:

如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

距离公式:

求算距离有以下几种方法:

曼哈顿距离,绝对值距离,明可夫斯基距离。

2 电影类型分析

电影类型分析

k = 1 爱情片

k = 2 爱情片

k = 6 无法确定

k = 7 动作片

3 问题

如果取的最近的电影数量不一样,会是什么结果?

k值取得过小,容易受到异常点的影响

k值取得过大,样本不均衡的影响

结合前面的约会对象数据,分析K-近邻算法需要做什么样的处理

3.2.2 K-近邻算法API

3.2.3 案例1 : 鸢尾花种类预测

1 数据集介绍

iris数据集是常用的分类实验室数据集,有Fsisher,1936收集整理,iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。

1)获取数据

2)数据集划分

3)特征工程

标准化

4)KNN预估器流程

5)模型评估

pycharm代码:

3.2.4 K-近邻总结

优点:简单,易于理解,易于实现,无需训练

缺点:懒惰算法,对测试样本分类时的计算量大,内存开销大

必须使用指定k值,k值选择不当则分类精度不能保证

使用场景:小数据场景,几千-几万样本,具体场景具体业务去测试

相关推荐
大大dxy大大15 小时前
机器学习实现逻辑回归-癌症分类预测
机器学习·分类·逻辑回归
小白跃升坊1 天前
数据分析报表如何选?详解 DataEase 四大表格:明细表、汇总表、透视表与热力图的适用场景与选择策略
数据挖掘·数据分析·开源软件·数据可视化·dataease
~~李木子~~1 天前
Windows软件自动扫描与分类工具 - 技术文档
windows·分类·数据挖掘
印象编程1 天前
数据挖掘 | 决策树ID3算法
机器学习·数据挖掘
Jonathan Star1 天前
MediaPipe 在Python中实现人体运动识别,最常用且高效的方案是结合**姿态估计**(提取人体关键点)和**动作分类**(识别具体运动)
开发语言·python·分类
qq_436962181 天前
奥威BI:打破数据分析的桎梏,让决策更自由
人工智能·数据挖掘·数据分析
B站计算机毕业设计之家1 天前
大数据python招聘数据分析预测系统 招聘数据平台 +爬虫+可视化 +django框架+vue框架 大数据技术✅
大数据·爬虫·python·机器学习·数据挖掘·数据分析
leo__5201 天前
MATLAB实现高光谱分类算法
支持向量机·matlab·分类
私域实战笔记2 天前
企业微信SCRM怎么选?工具适配与落地实操指南
人工智能·数据挖掘·企业微信·scrm·企业微信scrm
m0_748248022 天前
基于 C++ 的高性能批量媒体文件压缩程序
c++·人工智能·数据挖掘