分类算法3.1 sklearn转换器和估计器;3.2 K-近邻算法

3.1 sklearn转换器和估计器

转换器

估计器(estimator)

3.1.1 sklearn转换器 ------特征工程的父类

1.实例化(实例化的是一个转换器类(transforer))

2.调用fit_transform(对于文档建立分类词频矩阵,不能同时调用)

标准化:

(x-mean)/std

fit_transform()

fit() :计算 每一列的平均值,标准差

transform() :(x-mean)/std进行最终的转换

3.1.2 估计器(sklearn机器学习算法的实现)

估计器工作流程

估计器(estimator)

  1. 实例化一个estimator

  2. estimator.fit(x_train,y_train) 计算

  3. 模型评估:

1) 直接比对真实值和预测值

y_preidct = estimator.predict(x_test)

y_test == y_predict

  1. 计算准确率

accuray = estimator.score(x_test,y_test)

3.2 K-近邻算法

3.2.1什么是K-近邻算法

1.K-近邻算法(KNN)原理

这个算法是机器学习中一个比较经典的算法。

定义:

如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

距离公式:

求算距离有以下几种方法:

曼哈顿距离,绝对值距离,明可夫斯基距离。

2 电影类型分析

电影类型分析

k = 1 爱情片

k = 2 爱情片

k = 6 无法确定

k = 7 动作片

3 问题

如果取的最近的电影数量不一样,会是什么结果?

k值取得过小,容易受到异常点的影响

k值取得过大,样本不均衡的影响

结合前面的约会对象数据,分析K-近邻算法需要做什么样的处理

3.2.2 K-近邻算法API

3.2.3 案例1 : 鸢尾花种类预测

1 数据集介绍

iris数据集是常用的分类实验室数据集,有Fsisher,1936收集整理,iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。

1)获取数据

2)数据集划分

3)特征工程

标准化

4)KNN预估器流程

5)模型评估

pycharm代码:

3.2.4 K-近邻总结

优点:简单,易于理解,易于实现,无需训练

缺点:懒惰算法,对测试样本分类时的计算量大,内存开销大

必须使用指定k值,k值选择不当则分类精度不能保证

使用场景:小数据场景,几千-几万样本,具体场景具体业务去测试

相关推荐
LASDAaaa12311 小时前
基于DETR的花卉种类识别与分类系统详解
人工智能·数据挖掘
Lun3866buzha1 小时前
【YOLO11-seg-RFCBAMConv】传送带状态检测与分类改进实现【含Python源码】
python·分类·数据挖掘
Allen_LVyingbo2 小时前
面向70B多模态医疗大模型预训练的工程落地(医疗大模型预训练扩展包)
人工智能·python·分类·知识图谱·健康医疗·迁移学习
AI科技星3 小时前
电磁光速几何耦合常数 Z‘ 的几何起源、第一性原理推导与多维度验证
人工智能·线性代数·算法·矩阵·数据挖掘
粉色挖掘机3 小时前
AI算子的分类及常见算子介绍
人工智能·分类·数据挖掘
郝学胜-神的一滴4 小时前
特征选择利器:深入理解SelectKBest与单变量特征选择
人工智能·python·程序人生·机器学习·数据分析·scikit-learn·sklearn
Faker66363aaa21 小时前
GSM微波天线设备识别与分类_YOLOv26模型实现_1
yolo·分类·数据挖掘
创业之路&下一个五年21 小时前
以教为学:在赋能他人中完成自我跃升
机器学习·自然语言处理·数据挖掘
Aloudata1 天前
数据工程新范式:NoETL 语义编织如何激活海量埋点数据价值?
数据挖掘·数据分析·etl·指标平台
2501_936146041 天前
生活垃圾智能分类与识别_YOLOv26实现金属玻璃塑料垃圾精确检测_1
yolo·分类·生活