在Neo4j中导入多个csv文件

对于批量导入操作,为每个文件导入使用单独的:auto命令,以确保它们不会被包含在一个显式的事务中。以下是脚本示例:

导入第一个CSV文件创建节点(Label1)
bash 复制代码
:auto USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM 'file:///xxxx.csv' AS line
CREATE (n:Label1 {id: toInteger(line.id), property1: line.property1})
导入第二个CSV文件创建节点(Label2)
bash 复制代码
:auto USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM 'file:///xxxxx2.csv' AS line
CREATE (m:Label2 {id: toInteger(line.id), property2: line.property2})

导入第三个CSV文件创建节点(Label3)

bash 复制代码
:auto USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM 'file:///xxxxxx3.csv' AS line
CREATE (m:Label3 {id: toInteger(line.id), property3: line.property3})

导入第4.5.6.7等等~~~~~个CSV文件创建节点(Labelx)

bash 复制代码
:auto USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM 'file:///xxxxxx3.csv' AS line
CREATE (m:Label4 {id: toInteger(line.id), property4: line.property4})
导入关系CSV文件创建关系
bash 复制代码
:auto USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM 'file:///guanxi.csv' AS line
MATCH (a:Label1 {id: toInteger(line.source)})
MATCH (b:Label2 {id: toInteger(line.target)})
CREATE (a)-[r:RELATIONSHIP_TYPE]->(b)
SET r = line // 如果你想将CSV中的所有列作为关系属性导入

注意事项

  • 分批提交USING PERIODIC COMMIT默认会每1000条记录提交一次事务,如果你的数据集非常大,这有助于防止内存溢出。
  • 数据验证:确保CSV文件中的数据格式正确无误,并且ID字段能够正确转换为整数类型。
  • 索引和约束:如果可能的话,在导入前创建适当的索引或唯一性约束,可以大大提高匹配节点的速度。
  • 错误处理 :考虑添加一些错误处理逻辑,例如使用MERGE代替CREATE以避免重复插入节点。

确认数据导入

首先,运行一些简单的查询以确认数据已经被正确导入到Neo4j数据库中:

bash 复制代码
MATCH (n:Label1) RETURN n LIMIT 25;

这将返回最多25个Label1类型的节点,

检查关系
bash 复制代码
MATCH ()-[r:RELATIONSHIP_TYPE]->() RETURN r LIMIT 25;

这将返回最多25条RELATIONSHIP_TYPE类型的关系,

显示所有节点和关系

如果你想要查看所有节点及其关系,可以使用以下查询:

bash 复制代码
MATCH (n)-[r]->(m)
RETURN n, r, m
LIMIT 25 // 限制返回的结果数量,避免一次性加载过多数据
相关推荐
皇族崛起2 天前
金融 - neo4j、Graph Data Science 安装
金融·知识图谱·neo4j·信息差·ai赋能
羊羊小栈2 天前
基于知识图谱(Neo4j)和大语言模型(LLM)的图检索增强(GraphRAG)的智能音乐推荐系统(vue+flask+AI算法)
人工智能·毕业设计·neo4j·大作业
追光天使5 天前
Mac 安装Neo4j教程
macos·neo4j
二饭6 天前
使用Docker安装Neo4j
docker·容器·neo4j
蒋星熠6 天前
TensorFlow与PyTorch深度对比分析:从基础原理到实战选择的完整指南
人工智能·pytorch·python·深度学习·ai·tensorflow·neo4j
好开心啊没烦恼7 天前
图数据库:基于历史学科的全球历史知识图谱构建,使用Neo4j图数据库实现中国历史与全球历史的关联查询。
大数据·数据库·python·数据挖掘·数据分析·知识图谱·neo4j
vv_5017 天前
Langchain+Neo4j+Agent 的结合案例-电商销售
人工智能·langchain·agent·neo4j
麦麦大数据9 天前
D018 vue+django 旅游图谱推荐问答系统|neo4j数据库|智能问答
vue.js·django·echarts·知识图谱·旅游·neo4j·智能问答
麦麦大数据11 天前
D017 vue+django+neo4j音乐知识图谱推荐可视化分析系统|带管理员角色+爬虫
vue.js·数据分析·django·知识图谱·neo4j·推荐算法
tianyuanwo11 天前
全面掌握 Py2neo 与 Neo4j:从容器化部署到高级应用实战
neo4j·图数据库·py2neo